Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2231?lang=en
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Avaliação das propriedades dinâmico mecânicas e reológicas de compositos nanoestruturados de PPS/MWCNT

Evaluation of dynamic mechanical and rheological properties of MWCNT/PPS nanostructured composites

Ribeiro, Bruno; Botelho, Edson Cocchieri; Costa, Michelle Leali; Bandeira, Cirlene Fourquet

Downloads: 0
Views: 979

Resumo

Neste estudo, foram avaliadas as propriedades dinâmico mecânicas e a viscosidade de compósitos nanoestruturados de poli(sulfeto de fenileno) (PPS) reforçado com nanotubos de carbono de paredes múltiplas (MWCNT) obtidos através da técnica de mistura em fusão. O módulo de armazenamento (E') e a temperatura de transição vítrea (Tg) apresentaram aumentos de até 130% e 11 °C em relação ao PPS puro quando 2,0 m/m% do nanoreforço foi considerado. Além disso, para concentrações superiores a 1,0% em massa foi observado um aumento nos valores da viscosidade complexa (η*), o que sugere a formação de uma estrutura interconectada de nanotubos no interior da matriz polimérica.

Palavras-chave

MWCNT, PPS, propriedades dinâmico mecânicas, viscosidade complexa.

Abstract

In this work, dynamic mechanical properties and viscosity of multiwalled carbon nanotubes reinforced poly (phenylene sulfide) nanostructured composites obtained by melt mixing techinique were investigated. The storage modulus (E') and the glass transition temperature (Tg) showed increases up to 130% and 11 °C for concentrations of 2.0 wt% compared to neat PPS. In Addition, it was observed for concentrations above 1.0 wt% an increment of complex viscosity (η*), suggesting the formation of an interconnected nanotube structure within the polymeric matrix.

Keywords

MWCNT, PPS, dynamic mechanical properties, complex viscosity.

References

1. Khan, M. O., Leung, S. N., Chan, E., Naguib, H. E., Dawson, F., & Adinkrah, V. (2013). Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide based composites. Polymer Engineering and Science, 53(11), 2398-2406. http://dx.doi.org/10.1002/pen.23503.

2. Pereira, M. B. (2003). Caracterização de filmes ópticos compósitos nanoestruturados, inomogeneos ou anisotrópicos, produzidos por troca iônica e pelo método sol-gel (Dissertação de mestrado). Universidade Federal do Rio Grande do Sul, Porto Alegre.

3. Guimarães, T. R., Morales, A. R., & Paiva, L. B. (2006). Propriedades mecânicas de nanocompósitos de polipropileno e montmorilonita organofílica. Polímeros: Ciência e Tecnologia, 16(2), 136-140. http://dx.doi.org/10.1590/S0104-14282006000200014.

4. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. http://dx.doi.org/10.1038/354056a0.

5. Farahani, R. D., Dalir, H., Borgne, V., Gautier, L. A., Khakani, M. A. E., Lévesque, M., & Therriault, D. (2012). Reinforcing epoxy nanocomposites with functionalized carbon nanotubes via biotin-streptavidin interactions. Composites Science and Technology, 72(12), 1387-1395. http://dx.doi.org/10.1016/j.compscitech.2012.05.010.

6. Ma, P. C., Siddiqui, N. A., Marom, G., & Kim, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A, Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

7. Sun, G., Chen, G., Liu, Z., & Chen, M. (2010). Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon, 48(5), 1434-1440. http://dx.doi.org/10.1016/j.carbon.2009.12.037.

8. Tang, X. G., Hou, M., Zou, J., Truss, R., Yang, M., & Zhu, Z. (2012). Toughening and reinforcement of poly(vinylidene fluoride) nanocomposites with “bud-branched” nanotubes. Composites Science and Technology, 2(72), 263-268. http://dx.doi.org/10.1016/j.compscitech.2011.11.011.

9. Liu, Z., Bai, G., Huang, Y., Ma, Y., Feng, D., Li, F., Guo, T., & Chen, Y. (2007). Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon, 45(4), 821-827. http://dx.doi.org/10.1016/j.carbon.2006.11.020.

10. Vidhate, S., Innocentini-Mei, L., & D’Souza, N. A. (2012). Mechanical and electrical multifunctional poly(3-hydroxybutyrate-co-3-hydroxyvalerate): multiwall carbon nanotube nanocomposites. Polymer Engineering and Science, 52(6), 1367-1374. http://dx.doi.org/10.1002/pen.23084.

11. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2014). Estudo da cinética de decomposição de compósitos nanoestruturados de poli (Sulfeto de Fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 24(6), 720-725. http://dx.doi.org/10.1590/0104-1428.1698.

12. Díez-Pascual, A. M., Naffakh, M., Marco, C., & Ellis, G. (2012). Mechanical and electrical properties of carbon nanotube/poly(phenylene sulphide) composites incorporating polyetherimide and inorganic fullerene-like nanoparticles. Composites Part A, Applied Science and Manufacturing, 43(4), 603-612. http://dx.doi.org/10.1016/j.compositesa.2011.12.026.

13. Goyal, R. K., Kambale, K. R., Nene, S. S., Selukar, B. S., Arbuj, S., & Mulik, U. P. (2011). Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites. Materials Chemistry and Physics, 128(1-2), 114-120. http://dx.doi.org/10.1016/j.matchemphys.2011.02.065.

14. Zhou, S., Zhang, Q., Wu, C., & Huang, J. (2013). Effect of carbon fiber reinforcement on the mechanical and tribological properties of polyamide6/polyphenylene sulfide composites. Materials & Design, 44, 493-499. http://dx.doi.org/10.1016/j.matdes.2012.08.029.

15. Bo, Y., Long, C., Meifang, Z., & Yanmo, C. (2007). Reactive blends of poly(phenylene sulfide)/hyperbranched poly(phenylene sulfide). Macromolecular Symposia, 254(1), 167-172. http://dx.doi.org/10.1002/masy.200750826.

16. Chen, Z., Li, T., Yang, Y., Liu, X., & Lv, R. (2004). Mechanical and tribological properties of PA/PPS blends. Wear, 257(7-8), 696-707. http://dx.doi.org/10.1016/j.wear.2004.03.013.

17. Noll, A., & Burkhart, T. (2011). Morphological characterization and modelling of electrical conductivity of multi-walled carbon nanotube/poly(p-phenylene sulfide) nanocomposites obtained by twin screw extrusion. Composites Science and Technology, 71(4), 499-505. http://dx.doi.org/10.1016/j.compscitech.2010.12.026.

18. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2014). Estudo da cinética de decomposição de compósitos nanoestruturados de poli (Sulfeto de Fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 24(6), 720-725. http://dx.doi.org/10.1590/0104-1428.1698.

19. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2015). Estudo das propriedades elétricas e térmicas de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 25(1), 94-100. http://dx.doi.org/10.1590/0104-1428.1728.

20. Cassu, S. N., & Felisberti, M. I. (2005). Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas. Quimica Nova, 28(2), 250-254. http://dx.doi.org/10.1590/S0100-40422005000200017.

21. Kaleemullah, M., Khan, S. U., & Kim, J. K. (2012). Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Composites Science and Technology, 72(16), 1968-1976. http://dx.doi.org/10.1016/j.compscitech.2012.08.020.

22. Díez-Pascual, A. M., & Naffakh, M. (2013). Enhancing the thermomechanical behaviour of poly(phenylene sulphide) based composites via incorporation of covalently grafted carbon nanotubes. Composites. Part A, Applied Science and Manufacturing, 54, 10-19. http://dx.doi.org/10.1016/j.compositesa.2013.06.018.

23. Ribeiro, B. (2015). Obtenção e caracterização de compósitos nanoestruturados de poli (sulfeto de fenileno) reforçados com nanotubos de carbono (Tese de doutorado). Universidade Estadual Paulista, Guaratinguetá.

24. Chen, W., Lu, H., & Nutt, S. R. (2008). The influence of functionalized MWCNT reinforcement on the thermomechanical properties and morphology of epoxy nanocomposites. Composites Science and Technology, 68(12), 2535-2542. http://dx.doi.org/10.1016/j.compscitech.2008.05.011.

25. Yang, J., Xu, T., Lu, A., Zhang, Q., Tan, H., & Fu, Q. (2009). Preparation and properties of poly (p-phenylene sulfide)/multiwall carbon nanotube composites obtained by melt compounding. Composites Science and Technology, 69(2), 147-153. http://dx.doi.org/10.1016/j.compscitech.2008.08.030.

26. Du, B., & Fang, Z. (2011). Effects of carbon nanotubes on the thermal stability and flame retardancy of intumescent flame-retarded polypropylene. Polymer Degradation & Stability, 96(10), 1725-1731. http://dx.doi.org/10.1016/j.polymdegradstab.2011.08.002.

27. Botelho, E. C., Costa, M. L., Braga, C. I., Burkhart, T., & Lauke, B. (2013). Viscoelastic behavior of multiwalled carbon nanotubes into phenolic resin. Materials Research, 16(4), 713-720. http://dx.doi.org/10.1590/S1516-14392013005000045.

28. Zhang, Q., Fang, F., Zhao, X., Li, Y., Zhu, M., & Chen, D. (2008). Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. The Journal of Physical Chemistry B, 112(40), 12606-12611. PMid:18785703. http://dx.doi.org/10.1021/jp802708j.

29. Han, M. S., Lee, Y. K., Lee, H. S., Yun, C. H., & Kim, W. N. (2009). Electrical, morphological and rheological properties of carbon nanotube composites with polyethylene and poly(phenylene sulfide) by melt mixing. Chemical Engineering Science, 64(22), 4649-4656. http://dx.doi.org/10.1016/j.ces.2009.02.026.

5b7ac4960e8825176d896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections