Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2100
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Thermal and catalytic pyrolysis of plastic waste

Almeida, Débora; Marques, Maria de Fátima

Downloads: 1
Views: 1623

Abstract

The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

Keywords

catalytic pyrolysis, fuel oils, thermal pyrolysis, zeolites.

References

1. Mastral, J. F., Berrueco, C., & Ceamanos, J. (2007). Theoretical prediction of product distribution of the pyrolysis of high density polyethylene. Journal of Analytical and Applied Pyrolysis, 80(2), 427-438. http://dx.doi.org/10.1016/j.jaap.2006.07.009.

2. Abbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2012). The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. Journal of Analytical and Applied Pyrolysis, 95, 198-204. http://dx.doi.org/10.1016/j.jaap.2012.02.007.

3. Arabiourrutia, M., Elordi, G., Lopez, G., Borsella, E., Bilbao, J., & Olazar, M. (2012). Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 94, 230-237. http://dx.doi.org/10.1016/j.jaap.2011.12.012.

4. Coelho, A., Costa, L., Marques, M. M., Fonseca, I. M., Lemos, M. A. N. D. A., & Lemos, F. (2012). The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Applied Catalysis A: General, 413-414, 183-191. http://dx.doi.org/10.1016/j.apcata.2011.11.010.

5. Abbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2013). Evaluation of pyrolysis products of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Processing Technology, 109, 90-95. http://dx.doi.org/10.1016/j.fuproc.2012.09.042.

6. Stelmachowski, M. (2010). Thermal conversion of waste polyolefins to the mixture by hydrocarbons in the reactor with molten metal bed. Energy Conversion and Management, 51(10), 2016-2020. http://dx.doi.org/10.1016/j.enconman.2010.02.035.

7. Miskolczi, N., & Nagy, R. (2012). Hydrocarbons obtained by waste plastic pyrolysis: comparative analysis of decomposition described by different kinetic models. Fuel Processing Technology, 104, 96-104. http://dx.doi.org/10.1016/j.fuproc.2012.04.031.

8. Demirbas, A. (2004). Pyrolysis of municipal of plastic wastes for recovery of gasoline-range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 72(1), 97-102. http://dx.doi.org/10.1016/j.jaap.2004.03.001.

9. Valle, M. L. M., Guimarães, M. J. O. C., & Sampaio, C. M. S. (2004). Degradação de poliolefinas utilizando catalisadores zeólitas. Polímeros: Ciência e Tecnologia, 1(14), 17-21. http://dx.doi.org/10.1590/S0104-14282004000100009.

10. Shah, S. H., Khan, Z. M., Raja, I. A., Mahmood, Q., Bhatti, Z. A., Khan, J., Farooq, A., Rashid, N., & Wu, D. (2010). Low temperature conversion of plastic waste into light hydrocarbons. Journal of Hazardous Materials, 179(1-3), 15-20. http://dx.doi.org/10.1016/j.jhazmat.2010.01.134. PMid:20172649.

11. Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuel. A suitable method for plastic waste management and manufacture of value added products: a world prospective. Renewable & Sustainable Energy Reviews, 14(1), 233-248. http://dx.doi.org/10.1016/j.rser.2009.07.005.

12. Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Management (New York, N.Y.), 29(10), 2625-2643. http://dx.doi.org/10.1016/j.wasman.2009.06.004. PMid:19577459.

13. Spinacé, M. A. S., & De Paoli, M. A. (2005). A tecnologia da reciclagem de polímeros. Quimica Nova, 98(1), 65-72. http://dx.doi.org/10.1590/S0100-40422005000100014.

14. Singhabhandhu, A., & Tezuka, T. (2010). The waste-to-energy framework for integrated multi-waste utilization: waste cooking oil, waste lubricating oil, and waste plastics. Energy, 35(6), 2544-2551. http://dx.doi.org/10.1016/j.energy.2010.03.001.

15. Lin, Y.-H., & Yang, M.-H. (2008). Tertiary recycling of polyethylene waste by fluidized-bed reactions in the presence of various cracking catalysts. Journal of Analytical and Applied Pyrolysis, 83(1), 101-109. http://dx.doi.org/10.1016/j.jaap.2008.06.004.

16. Huang, W.-C., Huang, M.-S., Huang, C.-F., Chen, C.-C., & Ou, K.-L. (2010). Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts. Fuel, 89(9), 2305-2316. http://dx.doi.org/10.1016/j.fuel.2010.04.013.

17. López, A., De Marco, I., Caballero, B. M., Adrados, A., & Laresgoiti, M. F. (2011). Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes. Waste Management (New York, N.Y.), 31(8), 1852-1858. http://dx.doi.org/10.1016/j.wasman.2011.04.004. PMid:21530221.

18. Park, D. W., Hwang, E. Y., Kim, J. R., Choi, J. K., Kim, Y. A., & Woo, H. C. (1999). Catalytic degradation of polyethylene over solid acid catalysts. Polymer Degradation & Stability, 65(2), 193-198. http://dx.doi.org/10.1016/S0141-3910(99)00004-X.

19. Lin, Y.-H., & Yang, M.-H. (2005). Catalytic reactions of post-consumer polymer waste over fluidized cracking catalysts for producing hydrocarbons. Journal of Molecular Catalysis A Chemical, 231(1-2), 113-122. http://dx.doi.org/10.1016/j.molcata.2005.01.003.

20. Achilias, D. S., Roupakias, C., Megalokonomos, P., Lappas, A. A., & Antonakou, E. V. (2007). Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3), 536-542. http://dx.doi.org/10.1016/j.jhazmat.2007.06.076. PMid:17681427.

21. Aguado, J., Serrano, D. P., San Miguel, G., Escola, J. M., & Rodríguez, J. M. (2007). Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and waste polyolefins. Journal of Analytical and Applied Pyrolysis, 78(1), 153-161. http://dx.doi.org/10.1016/j.jaap.2006.06.004.

22. Serrano, D. P., Aguado, J., Escola, J. M., & Rodríguez, J. M. (2005). Influence of nanocrystalline HZSM-5 external surface on the catalytic cracking of polyolefins. Journal of Analytical and Applied Pyrolysis, 74(1-2), 353-360. http://dx.doi.org/10.1016/j.jaap.2004.11.037.

23. Lin, H.-T., Huang, M.-S., Luo, J.-W., Lin, L.-H., Lee, C.-M., & Ou, K.-L. (2010). Hydrocarbon fuels produced by catalytic pyrolysis of hospital plastic wastes in a fluidizing cracking process. Fuel Processing Technology, 91(11), 1355-1363. http://dx.doi.org/10.1016/j.fuproc.2010.03.016.

24. López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2010). Pyrolysis of municipal wastes: influence of raw material composition. Waste Management (New York, N.Y.), 30(4), 620-627. http://dx.doi.org/10.1016/j.wasman.2009.10.014. PMid:19926462.

25. Sakata, Y., Uddin, M.A., & Muto, A. (1999). Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis, 51(1-2), 135-155.

26. Lee, S.Y., Yoon, J.H., Kim, J.R., & Park, D.W. (2001). Catalytic degradation of polystyrene over natural clinoptilolite zeolita. Polymer Degradation and Stability, 74(2), 297-305.

27. Hernández, M. R., Garcia, A. N., & Marcilla, A. (2005). Study of the gases obtained in thermal and catalytic flash pyrolysis of HDPE in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 73(2), 314-322. http://dx.doi.org/10.1016/j.jaap.2005.03.001.

28. Buekens, A. (2006). Introduction to feedstock recycling of plastics. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 3-42). Hoboken: John Wiley & Sons.

29. Silvério, F. O., Barbosa, L. C. A., & Piló-Veloso, D. (2008). A pirólise como técnica analítica. Quimica Nova, 31(6), 1543-1552. http://dx.doi.org/10.1590/S0100-40422008000600045.

30. Lopez-Urionabarrenechea, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2012). Catalytic stepwise pyrolysis of packaging plastic waste. Journal of Analytical and Applied Pyrolysis, 96, 54-62. http://dx.doi.org/10.1016/j.jaap.2012.03.004.

31. Singh, S., Wu, C., & Williams, P. (2012). Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques. Journal of Analytical and Applied Pyrolysis, 94, 99-107. http://dx.doi.org/10.1016/j.jaap.2011.11.011.

32. Donaj, P. J., Kaminsky, W., Buzeto, F., & Yang, W. (2012). Pyrolysis of polyolefins for increasing the yield of monomers’ recovery. Waste Management (New York, N.Y.), 32(5), 840-846. http://dx.doi.org/10.1016/j.wasman.2011.10.009. PMid:22093704.

33. Scheirs, J. (2006). Overview of commercial pyrolysis processes for waste plastics. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 383-434). Hoboken: John Wiley & Sons.

34. Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86(1-2), 78-86. http://dx.doi.org/10.1016/j.apcatb.2008.07.026.

35. Lee, K.-H. (2012). Effects of the types of zeolites on catalytic upgrading of pyrolysis wax oil. Journal of Analytical and Applied Pyrolysis, 94, 209-214. http://dx.doi.org/10.1016/j.jaap.2011.12.015.

36. Aguado, J., Serrano, D. P., & Escola, J. M. (2006). Catalytic upgrading of plastic wastes. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 73-110). Hoboken: John Wiley & Sons.

37. Lee, K.-H. (2006). Thermal and catalytic degradation of waste HDPE. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 129-160). Hoboken: John Wiley & Sons.

38. Murata, K., Brebu, M., & Sakata, Y. (2010). The effect of silica-alumina catalysts on degradation of polyolefins by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 89(1), 30-38. http://dx.doi.org/10.1016/j.jaap.2010.05.002.

39. Liu, W., Hu, C., Yang, Y., Tong, D., Li, G., & Zhu, L. (2010). Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energy Conversion and Management, 51(5), 1025-1032. http://dx.doi.org/10.1016/j.enconman.2009.12.005.

40. White, R. L. (2006). Acid-catalyzed cracking of polyolefins: primary reaction mechanism. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 45-72). Hoboken: John Wiley & Sons.

41. Mastral, J. F., Berrueco, C., Gea, M., & Ceamanos, J. (2006). Catalytic degradation of high density polyethylene over nanocrystalline HZSM-5 zeolite. Polymer Degradation & Stability, 91(12), 3330-3338. http://dx.doi.org/10.1016/j.polymdegradstab.2006.06.009.

42. Ofoma, I. (2006). Catalytic pyrolysis of polyolefins. Atlanta: Georgia Institute of Technology.

43. Li, X., Shen, B., Guo, Q., & Gao, J. (2007). Effects of large pore zeolite additions in the catalytic pyrolysis catalyst on the light olefins production. Catalysis Today, 125(3-4), 270-277. http://dx.doi.org/10.1016/j.cattod.2007.03.021.

44. Miskolczi, N., & Bartha, L. (2008). Investigation of hydrocarbon fractions form waste plastic recycling by FTIR, GC, EDXRFS and SEC techniques. Journal of Biochemical and Biophysical Methods, 70(6), 1247-1253. http://dx.doi.org/10.1016/j.jbbm.2007.05.005. PMid:17602751.

45. Elordi, G., Olazar, M., Aguado, R., Lopez, G., Arabiourrutia, M., & Bilbao, J. (2007). Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 79(1-2), 450-455. http://dx.doi.org/10.1016/j.jaap.2006.11.010.

46. Manos, G. (2006). Catalytic degradation of plastic waste to fuel over microporus materials. In J. Scheirs, & W. Kaminsky (Orgs.), Feedstock recycling and pyrolysis of waste plastics (pp. 193-208). Hoboken: John Wiley & Sons.

47. Kaminsky, W., & Zorriqueta, I.-J. N. (2007). Catalytical and thermal pyrolysis of polyolefins. Journal of Analytical and Applied Pyrolysis, 79(1-2), 368-374. http://dx.doi.org/10.1016/j.jaap.2006.11.005.

48. López, A., De Marco, I., Caballero, B. M., Laresgoiti, M. F., Adrados, A., & Aranzabal, A. (2011). Catalytic pyrolysis of plastic wastes with two different types of catalysts: ZSM-5 zeolite and Red Mud. Applied Catalysis B: Environmental, 104(3-4), 211-219. http://dx.doi.org/10.1016/j.apcatb.2011.03.030.

49. Seo, Y.-H., Lee, K.-H., & Shin, D.-H. (2003). Investigation of catalytic degradation of high-density polyethylene by hydrocarbons group type analysis. Journal of Analytical and Applied Pyrolysis, 70(2), 383-398. http://dx.doi.org/10.1016/S0165-2370(02)00186-9.

50. Lin, Y.-H. (2009). Production of valuable hydrocarbons by catalytic degradation of a mixture of post-consumer plastic waste in a fluidized-bed reactor. Polymer Degradation & Stability, 94(11), 1924-1931. http://dx.doi.org/10.1016/j.polymdegradstab.2009.08.004.

51. Monte, M. B. M., & Resende, N. G. A. M. (2005). Zeolitas naturais. In A. B. Luz, & F. A. F. Lins, Rocha e minerais industriais: usos e especificações (pp. 699-720). Rio de Janeiro: CETEM.

52. Letichevsky, S. (2008). Síntese e caracterização das zeolitas mordenita, ferrierita e ZSM-5 nanocristalinas (Tese de doutorado). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro.

53. Tourinho, R.R.C. (2009). Estudo da acidez de zeolitas impregnadas com platina utilizando reações de troca H/D com aromáticos e correlações lineares de energia livre (Dissertação de mestrado). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

54. Aksoy, Y. Y. (2010). Characterization of two zeolites for geotechnical and geoenvironmental applications. Applied Clay Science, 50(1), 130-136. http://dx.doi.org/10.1016/j.clay.2010.07.015.

55. Braga, A. A. C., & Morgon, N. H. (2007). Descrições estruturais cristalinas de zeolitos. Quimica Nova, 30(1), 178-188. http://dx.doi.org/10.1590/S0100-40422007000100030.

56. Pinto, F., Costa, P., Gulyurtlu, I., & Cabrita, I. (1999). Pyrolysis of plastic wastes 2. Effect of catalyst on product yield. Journal of Analytical and Applied Pyrolysis, 51, 57-71.

57. Hwang, E.-Y., Kim, J.-R., Choi, J.-K.; Woo, H.-C., & Park, D.-W. (2002). Performance of acid treated natural zeolitas in catalytic degradation of polypropylene. Journal of Analytical and Applied Pyrolysis, 62(2), 351-364.
588371d47f8c9d0a0c8b4aa1 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections