Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2087
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Otimização do processo de dispersão de nanotubos de carbono em poliuretano termorrígido

Optimization of carbon nanotubes dispersion process in thermoset polyurethane

Lopes, Magnovaldo Carvalho; Trigueiro, João Paulo Campos; Castro, Vinicius Gomide de; Lavall, Rodrigo Lassarote; Silva, Glaura Goulart

Downloads: 0
Views: 1112

Resumo

Neste trabalho foi desenvolvido um processo empregando misturador de alto cisalhamento e moinho de rolos para dispersar MWCNTs (multiwalled carbon nanotubes) puros e modificados em poliol visando a preparação de concentrados de 3% em massa. Condições otimizadas no trabalho permitiram a obtenção de suspensões com menor número e tamanho de agregados de MWCNTs. Compósitos contendo 0,5% em massa de MWCNTs foram preparados por diluição dos concentrados em poliol usando mistura mecânica seguida de cura. Resultados de microscopia indicaram que as melhores dispersões foram obtidas com os MWCNTs modificados, os quais permitiram um aumento na tensão na ruptura, no alongamento e uma melhor preservação da estabilidade térmica. Além disso, valores de condutividade elétrica sugerem que o compósito possa ser empregado para dissipação eletrostática. Dessa forma, os resultados obtidos demonstram que a modificação covalente da superfície dos MWCNTs e a utilização de estratégias eficientes de dispersão são essenciais para melhorar as propriedades finais dos nanocompósitos.

Palavras-chave

dispersão de nanotubos de carbono, nanotubos de carbono modificados, propriedades mecânicas, poliuretano termorrígido elastomérico.

Abstract

A process employing high shear mixer and roll mill to disperse pristine and modified MWCNTs (multiwalled carbon nanotubes) in polyol was developed in order to prepare 3 wt% masterbatches. The optimum process conditions resulted in suspensions with smaller number and size of nanotube aggregates. Composites containing 0.5 wt% of MWCNTs were prepared by dilution of polyol masterbatches by simple mechanical mixing followed by cure. Microscopy data revealed better dispersion of modified carbon nanotubes in the polymer matrix, which promoted an increase in the tensile strength, elongation and a better preservation of thermal stability. Furthermore, electric conductivity values indicated that the composites can be used for electrostatic dissipation. These results demonstrate that the covalent modification of MWCNTs surface and the use of efficient dispersion strategies are essential to improve nanocomposites’ final properties.

Keywords

carbon nanotubes dispersion, modified carbon nanotubes, thermoset polyurethane elastomer, mechanical properties.

References

1. Prisacariu, C. (2011). Polyurethane elastomers: from morphology to mechanical aspects. New York: Springer.

2. Dieterich, D., Grigat, E., Hahn, W., Hespe, H., & Schmelzer, H. G. (1993). Principles of polyurethane chemistry and special applications. 2. ed. Cincinnati: Hanser.

3. Clemitson, I. R. (2008). Castable polyurethane elastomers. New York: CRC Press.

4. Chattopadhyay, D. K., & Raju, K. V. S. N. (2007). Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 32(3), 352-418. http://dx.doi.org/10.1016/j.progpolymsci.2006.05.003.

5. Sampurno, Y., Borucki, L., Zhuang, Y., Misra, S., Holland, K., Boning, D., & Philipossian, A. (2009). Characterization of thermoset and thermoplastic polyurethane pads, and molded and non-optimized machined grooving methods for oxide chemical mechanical planarization applications. Thin Solid Films, 517(5), 1719-1726. http://dx.doi.org/10.1016/j.tsf.2008.09.077.

6. Ledru, Y., Bernhart, G., Piquet, R., Schmidt, F., & Michel, L. (2010). Coupled visco-mechanical and diffusion void growth modelling during composite curing. Composites Science and Technology, 70(15), 2139-2145. http://dx.doi.org/10.1016/j.compscitech.2010.08.013.

7. Wang, T.-L., & Tseng, C.-G. (2007). Polymeric carbon nanocomposites from multiwalled carbon nanotubes functionalized with segmented polyurethane. Journal of Applied Polymer Science, 105(3), 1642-1650. http://dx.doi.org/10.1002/app.26224.

8. Wei, B. Q., Vajtai, R., & Ajayan, P. M. (2001). Reliability and current carrying capacity of carbon nanotubes. Applied Physics Letters, 79(8), 1172-1174. http://dx.doi.org/10.1063/1.1396632.

9. Yang, D. J., Wang, S. G., Zhang, Q., Sellin, P. J., & Chen, G. (2004). Thermal and electrical transport in multi-walled carbon nanotubes. Physics Letters, Part A, 329(3), 207-213. http://dx.doi.org/10.1016/j.physleta.2004.05.070.

10. Yu, M.-F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453), 637-640. http://dx.doi.org/10.1126/science.287.5453.637. PMid:10649994.

11. Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205. http://dx.doi.org/10.1021/ma060733p.

12. Silva, M. A., Tavares, M. I. B., Nascimento, S. A. M., Rodrigues, E., & Jd, R. (2012). Caracterização de nanocompósitos de poliuretano/montmorilonita organofílica por RMN de baixo campo. Polímeros: Ciência e Tecnologia, 22(5), 481-485. http://dx.doi.org/10.1590/S0104-14282012005000064.

13. De Volder, M. F. L., Tawfick, S. H., Baughman, R. H., & Hart, A. J. (2013). Carbon Nanotubes: Present and Future Commercial Applications. Science, 339(6119), 535-539. http://dx.doi.org/10.1126/science.1222453. PMid:23372006.

14. Kantheti, S., Gaddam, R. R., Narayan, R., & Raju, K. V. (2014). Hyperbranched polyol decorated carbon nanotube by click chemistry for functional polyurethane urea hybrid composites. RSC Advances, 4(47), 24420-24427. http://dx.doi.org/10.1039/c4ra02442g.

15. McClory, C., McNally, T., Brennan, G. P., & Erskine, J. (2007). Thermosetting polyurethane multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 105(3), 1003-1011. http://dx.doi.org/10.1002/app.26144.

16. Xiong, J., Zheng, Z., Qin, X., Li, M., Li, H., & Wang, X. (2006). The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon, 44(13), 2701-2707. http://dx.doi.org/10.1016/j.carbon.2006.04.005.

17. Xia, H., & Song, M. (2006). Preparation and characterisation of polyurethane grafted single-walled carbon nanotubes and derived polyurethane nanocomposites. Journal of Materials Chemistry, 16(19), 1843-1851. http://dx.doi.org/10.1039/b601152g.

18. Karabanova, L. V., Whitby, R. L. D., Korobeinyk, A., Bondaruk, O., Salvage, J. P., Lloyd, A. W., & Mikhalovsky, S. V. (2012). Microstructure changes of polyurethane by inclusion of chemically modified carbon nanotubes at low filler contents. Composites Science and Technology, 72(8), 865-872. http://dx.doi.org/10.1016/j.compscitech.2012.02.008.

19. Lopes, M. C., Silva, G. G., Lavall, R. L., Diniz, V. P. A., & Castro, V. G. (2013). BR Patente No 10201330082961. Brasília: Instituto Nacional de Propriedade Industrial.

20. Lopes, M. C., Castro, V.G., Seara, L. M., Diniz, V. P. A., Lavall, R. L., & Silva, G. G. (2014). Thermosetting polyurethane-multiwalled carbon nanotube composites: thermomechanical properties and nanoindentation. Journal of Applied Polymer Science, 131(23) 41207.

21. Silva, G. G., Lavall, R. L., Figueiredo, K. C. S., Castro, V. G., Costa, I. B., Medeiros, F. S., Lopes, M. C., Ferreira, F. L. Q., & Diniz, V. P. A. (2014). BR Patente No 1020140259660. Brasília: Instituto Nacional de Propriedade Industrial.

22. Delpech, M. C., Coutinho, F. M. B., Sousa, K. G. M., & Cruz, R. C. (2007). Estudo Viscosimétrico de Prepolímeros Uretânicos. Polímeros: Ciência e Tecnologia, 17(4), 294-298. http://dx.doi.org/10.1590/S0104-14282007000400008.

23. Pacheco, M. F. M., Fiorio, R., Zattera, A. J., Zeni, M., & Crespo, J. S. (2007). Efeito da concentração de segmentos rígidos nas propriedades físico-mecânicas, químicas e na morfologia de elastômeros microcelulares de poliuretano. Polímeros: Ciência e Tecnologia, 17(3), 234-239. http://dx.doi.org/10.1590/S0104-14282007000300013.

24. Ryszkowska, J. (2009). Quantitative image analysis of polyurethane/carbon nanotube composite microstructures. Materials Characterization, 60(10), 1127-1132. http://dx.doi.org/10.1016/j.matchar.2009.01.021.

25. Ryszkowska, J., Jurczyk-Kowalska, M., Szymborski, T., & Kurzydlowski, K. J. (2007). Dispersion of carbon nanotubes in polyurethane matrix. Physica E: Low-Dimensional Systems and Nanostructures, 39(1), 124-127. http://dx.doi.org/10.1016/j.physe.2007.02.003.

26. Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

27. Lavall, R. L., Sales, J. A., Borges, R. S., Calado, H. D. R., Machado, J. C., Windmoller, D., Silva, G. G., Lacerda, R. G., & Ladeira, L. O. (2010). Nanocompósitos de poliuretana termoplástica e nanotubos de carbono de paredes múltiplas para dissipação eletrostática. Quimica Nova, 33(1), 133-140. http://dx.doi.org/10.1590/S0100-40422010000100025.

28. Wen, T.-C., Du, Y.-L., & Digar, M. (2002). Compositional effect on the morphology and ionic conductivity of thermoplastic polyurethane based electrolytes. European Polymer Journal, 38(5), 1039-1048. http://dx.doi.org/10.1016/S0014-3057(01)00257-9.

29. Xiong, J., Zheng, Z., Song, W., Zhou, D., & Wang, X. (2008). Microstructure and properties of polyurethane nanocomposites reinforced with methylene-bis-ortho-chloroanilline-grafted multi-walled carbon nanotubes. Composites. Part A, Applied Science and Manufacturing, 39(5), 904-910. http://dx.doi.org/10.1016/j.compositesa.2007.12.008.

30. Wang, T.-L., Yu, C.-C., Yang, C.-H., Shieh, Y.-T., Tsai, Y.-Z., & Wang, N.-F. (2011). Preparation, characterization, and properties of polyurethane-grafted multiwalled carbon nanotubes and derived polyurethane nanocomposites. Journal of Nanomaterials, 2011, 1-9. http://dx.doi.org/10.1155/2011/814903. PMid:21808638.

31. Barick, A. K., & Tripathy, D. K. (2011). Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Materials Science and Engineering B, 176(18), 1435-1447. http://dx.doi.org/10.1016/j.mseb.2011.08.001.

32. Chattopadhyay, D. K., & Webster, D. C. (2009). Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 34(10), 1068-1133. http://dx.doi.org/10.1016/j.progpolymsci.2009.06.002.

33. Hablot, E., Zheng, D., Bouquey, M., & Avérous, L. (2008). Polyurethanes based on castor oil: kinetics, chemical, mechanical and thermal properties. Macromolecular Materials and Engineering, 293(11), 922-929. http://dx.doi.org/10.1002/mame.200800185.

34. Javni, I., Petrović, Z. S., Guo, A., & Fuller, R. (2000). Thermal stability of polyurethanes based on vegetable oils. Journal of Applied Polymer Science, 77(8), 1723-1734. http://dx.doi.org/10.1002/1097-4628(20000822)77:8<1723::AID-APP9>3.0.CO;2-K.

35. Mondal, S., & Hu, J. L. (2006). Thermal degradation study of functionalized MWNT reinforced segmented polyurethane membrane. Journal of Elastomers and Plastics, 38(3), 261-271. http://dx.doi.org/10.1177/0095244306064237.

36. Karabanova, L., Whitby, R. D., Bershtein, V., Korobeinyk, A., Yakushev, P., Bondaruk, O., Lloyd, A., & Mikhalovsky, S. (2013). The role of interfacial chemistry and interactions in the dynamics of thermosetting polyurethane-multiwalled carbon nanotube composites at low filler contents. Colloid & Polymer Science, 291(3), 573-583. http://dx.doi.org/10.1007/s00396-012-2745-4.

37. Zhao, C., Ji, L., Liu, H., Hu, G., Zhang, S., Yang, M., & Yang, Z. (2004). Functionalized carbon nanotubes containing isocyanate groups. Journal of Solid State Chemistry, 177(12), 4394-4398. http://dx.doi.org/10.1016/j.jssc.2004.09.036.

38. Song, H.-J., Zhang, Z.-Z., & Men, X.-H. (2007). Surface-modified carbon nanotubes and the effect of their addition on the tribological behavior of a polyurethane coating. European Polymer Journal, 43(10), 4092-4102. http://dx.doi.org/10.1016/j.eurpolymj.2007.07.003.

39. Lima, A. M. F., Castro, V. G. D., Borges, R. S., & Silva, G. G. (2012). Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros Ciência e Tecnologia, 22(2), 117-124. http://dx.doi.org/10.1590/S0104-14282012005000017.

40. Ajayan, P. M. (1999). Nanotubes from carbon. Chemical Reviews, 99(7), 1787-1800. http://dx.doi.org/10.1021/cr970102g. PMid:11849010.

41. Barrau, S., Demont, P., Peigney, A., Laurent, C., & Lacabanne, C. (2003). DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules, 36(14), 5187-5194. http://dx.doi.org/10.1021/ma021263b.

42. Musumeci, A. W., Silva, G. G., Liu, J.-W., Martens, W. N., & Waclawik, E. R. (2007). Structure and conductivity of multi-walled carbon nanotube/poly(3-hexylthiophene) composite films. Polymer, 48(6), 1667-1678. http://dx.doi.org/10.1016/j.polymer.2007.01.027.

43. Ramasubramaniam, R., Chen, J., & Liu, H. (2003). Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 83(14), 2928-2930. http://dx.doi.org/10.1063/1.1616976.
588371d37f8c9d0a0c8b4a9d polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections