Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2069
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Aplicação de nanotecnologia em embalagens de alimentos

Application of nanothecnology in food packaging

Almeida, Ana Carolina Sergio; Franco, Elisângela Aparecida Nazário; Peixoto, Fernanda Marques; Pessanha, Kênia Letícia Ferreira; Melo, Nathália Ramos

Downloads: 8
Views: 1998

Resumo

A nanotecnologia tem grande potencial de aplicação na indústria de alimentos. No desenvolvimento de embalagens, pode proporcionar diferentes alternativas, tais como o desenvolvimento de nanopartículas, nanodispersões, nanolaminados, e nanotubos, que, associados aos polímeros, podem fornecer diversas funções. Por exemplo, pela incorporação de nanopartículas com propriedades antimicrobianas; nanosensores capazes de detectar produtos químicos, agentes patogênicos e toxinas em alimentos; nanopartículas bioativas capazes de manter os compostos em condições ideais, até a sua migração para o produto alimentício e nanocompósitos, que melhorem as propriedades de flexibilidade, barreira a gases e umidade e quanto à absorção de irradiação UV dos materiais aos quais são incorporados, assim como a estabilidade frente à temperatura. Este artigo relata algumas aplicações da nanotecnologia em embalagens de alimentos, bem como questões sobre toxicidade e regulamentação relacionadas à possibilidade de migração das nanopartículas para os alimentos; razão pela qual o setor alimentício tem sido cauteloso com a utilização desses materiais.

Palavras-chave

toxicidade, regulamentação, nanopartículas, embalagem ativa, embalagem inteligente.

Abstract

Nanotechnology has great application potential in the food industry. In packaging development, it can provide several alternatives, such as the formation of nanoparticles, nanodispersions, nanolayered and nanotubes, which, associated with polymers, can provide multiple functions. For example, by embedding nanoparticles with antimicrobial properties; nanosensors capable of detecting chemicals products, pathogens and toxins in food; bioactive nanoparticles capable of maintaining compounds at optimal conditions until its migration to the food product and nanocomposites, which improve the properties of flexibility, gas and humidity barrier and UV irradiation absorption of the materials to which are incorporated, as well as stability against temperature. This article reports some applications of nanotechnology in food packaging, as well as questions regarding toxicity and regulations related to the migration of nanoparticles to the food products; reason why the food industry has been cautious with the utilization of these materials.

Keywords

toxicity, regulation, nanoparticles, active packaging, intelligent packaging.

References

1. Davis, G. & Song, J. H. (2006). Biodegradable packaging based on raw materials from crops and their impact on waste management. Industrial Crops and Products, 23(2), 147-161. http://dx.doi.org/101016/j.indcrop.2005.05.004.

2. Rabello, M. (2000). Aditivação de polímeros. São Paulo: Editora Artiliber.

3. Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28(1-2), 1-63. http://dx.doi.org/10.1016/S0927-796X(00)00012-7.

4. Espitia, P., Soares, N. F., Coimbra, J. S. R., Andrade, N. J., Cruz, R. S., & Medeiros, E. A. A. (2012). Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food and Bioprocesses Technology, 5(5), 1447-1464. http://dx.doi.org/10.1007/s11947-012-0797-6.

5. International Organization for Standardization – ISO. (2010). ISO/TS80004-1: nanotechnologies – vocabulary. Part 1: core terms. Geneva: ISO. Recuperado em 12 de julho de 2014, de https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-1:v1:en.

6. Vert, M., Doi, Y., Karl-Heinz, H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., & Schué, F. (2012). Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 84(2), 377-410. http://dx.doi.org/10.1351/PAC-REC-10-12-04.

7. US FOOD AND DRUG ADMINISTRATION. (2012). Nanotechnology: silver spring: FDA. Recuperado em 25 de agosto de 2014, de http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/default.html.

8. Carr, G. L. (2007). Desenvolvimento de Embalagem biodegradável tipo espuma a partir de fécula de mandioca (Tese de doutorado). Universidade de São Paulo, São Paulo. Recuperado em 09 de julho de 2014, de http://www.teses.usp.br/teses/disponiveis/3/3137/tde-08012008-150706/pt-br.php.

9. Kim, B., Kim, D., Cho, D., & Cho, S. (2003). Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere, 52(1), 277-281. http://dx.doi.org/10.1016/S0045-6535(03)00051-1. PMid:12729712.

10. Podsiadlo, P., Choi, S. Y., Shim, B., Lee, J., Cuddihy, M., & Kotov, N. A. (2005). Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules, 6, 2914-2918. http://dx.doi.org/10.1021/bm050333u.

11. Drexler, K. E. (2004). Nanotechnology: From Feynman to Funding. Bulletin of Science, Technology & Society, 24(1), 21-27. http://dx.doi.org/10.1177/0270467604263113.

12. Zhou, Q., Pramoda, K. P., Lee, J. M., Wang, K., & Loo, L. S. (2011). Role of interface in dispersion and surface energetics of polymer nanocomposites containing hydrophilic POSS and layered silicates. Journal of Colloid and Interface Science, 355(1), 222-230. http://dx.doi.org/10.1016/j.jcis.2010.12.010. PMid:21190693.

13. Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766-1782. http://dx.doi.org/10.1016/j.progpolymsci.2011.02.003.

14. Finnigan, B. (2009). Barrier polymers. In: K. L. Yam (Ed.), The wiley encyclopedia of packaging technology (pp. 103-109). New York: John Wiley and Sons.

15. Chau, C. F., Wu, S. H., & Yen, G. C. (2007). The development of regulations for food nanotechnology. Trends in Food Science & Technology, 18(5), 269-280. http://dx.doi.org/10.1016/j.tifs.2007.01.007.

16. Sanchez-Garcia, M. D., Gimenez, E., & Lagaron, J. M. (2008). Morphology and barrier properties of solvent cast composites of thermoplastic biopolymers and purified cellulose fibers. Carbohydrate Polymers, 71(2), 235-244. http://dx.doi.org/10.1016/j.carbpol.2007.05.041.

17. Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). Multifunctional PLA–PHB/cellulose nanocrystal films: processing,structural and thermal properties. Carbohydrate Polymers, 107, 16-24. http://dx.doi.org/10.1016/j.carbpol.2014.02.044. PMid:24702913.

18. Mirzadeh, A., & Kokabi, M. (2007). The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films. European Polymer Journal, 43(9), 3757-3765. http://dx.doi.org/10.1016/j.eurpolymj.2007.06.014.

19. Park, H. M., Lee, W. K., Park, C. Y., Cho, W. J., & Ha, C. S. (2003). Environmentally friendly polymer hybrids: part 1. Mechanical, thermal, and barrier properties of the thermoplastic starch/clay nanocomposites. Journal of Materials Science, 38(5), 909-915. http://dx.doi.org/10.1023/A:1022308705231.

20. Hu, Q., Fang, Y., Yang, Y., Ma, N., & Zhao, L. (2011). Effect of nanocomposite-based packaging on postharvest quality of ethylene-treatedkiwifruit (Actinidiadeliciosa) during cold storage, China. Food Research International, 44(6), 1589-1596. http://dx.doi.org/10.1016/j.foodres.2011.04.018.

21. Wong, Y. W. H., Yuen, C. W. M., Leung, M. Y. S., Ku, S. K. A., & Lam, H. L. I. (2006). Selected applications of nanotechnology in textiles. AUTEX Research Journal, 6(1), 1-8. Recuperado 09 de julho de 2014, de http://www.autexrj.com/cms/zalaczone_pliki/1-06-1.pdf.

22. Lahtinen, K., Maydannik, P., Seppänen, T., Cameron, C. D. C., Johansson, P., Kotkamo, S., & Kuusipalo, J. (2013). Protecting BOPP film from UV degradation with an atomic layer deposited titanium oxide surface coating, Finland. Applied Surface Science, 282, 506-511. http://dx.doi.org/10.1016/j.apsusc.2013.06.002.

23. Chaleshtori, M. Z., Masud, S. M. S., & Saupe, G. B. (2008). Using new porous nanocomposites for photocatalytic water decontamination. Materials Research Society Symposium Proceedings, 1145, 75-80. http://dx.doi.org/10.1557/PROC-1145-MM04-36.

24. Kim, J. Y., Han, S., & Hong, S. (2008). Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer, 49(15), 3335-3345. http://dx.doi.org/10.1016/j.polymer.2008.05.024.

25. Shan, G. F., Gong, X., Chen, W. P., Chen, L., & Zhu, M. F. (2011). Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate-co-3- hydroxyvalerate). Colloid & Polymer Science, 289(9), 1005-1014. http://dx.doi.org/10.1007/s00396-011-2412-1.

26. Xu, C., & Qiu, Z. (2011). Crystallization behavior and thermal property of biodegradable poly(3-hydroxybutyrate)/multi-walled carbon nanotubes nanocomposite. Polymers for Advanced Technologies, 22(5), 538-544. http://dx.doi.org/10.1002/pat.1540.

27. Yu, H. Y., Qin, Z. Y., Sun, B., Yang, X. G., & Yao, J. M. (2014). Reinforcement of transparent poly(3-hydroxybutyrate-co-3 hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Composites Science and Technology, 94, 96-104. http://dx.doi.org/10.1016/j.compscitech.2014.01.018.

28. Huang, J., & Rodrigue, D. (2014). The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites. Materials & Design, 55, 653-663. http://dx.doi.org/10.1016/j.matdes.2013.10.039.

29. Tang, Z. X., Fang, X. J., Zhang, Z. L., Zhou, T., Zhang, X. Y. & Shi, L. E. (2012). Nanosize MgO as antibacterial agent: preparation and characteristics. Brazilian Journal of Chemical Engineerig, 29(4), 775-781. http://dx.doi.org/10.1590/S0104-66322012000400009.

30. Emamifar, A., Kadivar, M., Shahedi, M., & Soleimanian-zad, S. (2011). Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control, 22(3-4), 408-415. http://dx.doi.org/10.1016/j.foodcont.2010.09.011.

31. Gogoi, S. K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S. S., & Chattopadhyay, A. (2006). Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir, 22(22), 9322-9328. http://dx.doi.org/10.1021/la060661v. PMid:17042548.

32. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. http://dx.doi.org/10.1016/j.jcis.2011.07.017. PMid:21824625.

33. Fernandez, A., Picouet, P., & Lloret, E. (2010). Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Journal of Food Protection, 73(12), 2263-2269. PMid:21219746.

34. Fernandez, A., Picouet, P., & Lloret, E. (2010). Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh-cut melon. International Journal of Food Microbiology, 142(1-2), 222-228. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.001. PMid:20656367.

35. Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.12.017. PMid:18262298.

36. Xie, Y., He, Y., Irwin, L. P., Jin, T., & Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Applied and Environmental Microbiology, 77(7), 2325-2331. http://dx.doi.org/10.1128/AEM.02149-10. PMid:21296935.

37. Baek, Y. W., & An, Y. J. (2011). Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. The Science of the Total Environment, 409(8), 1603-1608. http://dx.doi.org/10.1016/j.scitotenv.2011.01.014. PMid:21310463.

38. Coma, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1-2), 90-103. http://dx.doi.org/10.1016/j.meatsci.2007.07.035. PMid:22062099.

39. Assis, L. M., Zavareze, E. R., Prentice-Hernández, C. & Souza-Soares, L. A. (2012). Características de nanopartículas e potenciais aplicações em alimentos. Brazilian Journal of Food Technology, 15(2), 99-109. http://dx.doi.org/10.1590/S1981-67232012005000004.

40. Lopez-Rubio, A., Gavara, R., & Lagaron, J. M. (2006). Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology, 17(10), 567-575. http://dx.doi.org/10.1016/j.tifs.2006.04.012.

41. Brody, A. L., & Budney, J. A. (1995). Enzymes as active packing agents. In M. L. Roovey (Ed). Active food packing (pp. 174-192). Glasgow: Springer.

42. Cunha, L.R., Soares, N. F. F., Assis, F. C. C., Melo, N. R., Pereira, A. F. & Silva, C. B. (2007). Desenvolvimento e avaliação de embalagem ativa com incorporação de lactase. Ciência e Tecnologia de Alimentos, 27, 23-26. http://dx.doi.org/10.1590/S0101-20612007000500004.

43. Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82-89. http://dx.doi.org/10.1016/j.tibtech.2008.10.010. PMid:19135747.

44. Ai, K., Liu, Y., & Lu, L. (2009). Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. Journal of the American Chemical Society, 131(27), 9496-9497. http://dx.doi.org/10.1021/ja9037017. PMid:19537721.

45. Staiano, M., Matveeva, E. G., Rossi, M., Crescenzo, R., Gryczynski, Z., Gryczynski, I., Iozzino, L., Akopova, I., & D’Auria, S. (2009). Nanostructured silver-based surfaces: new emergent methodologies for an easy detection of analytes. ACS Applied Materials & Interfaces, 1(12), 2909-2916. http://dx.doi.org/10.1021/am900617p. PMid:20356174.

46. Liu, H., Xie, F., Yu, L., Chen, L., & Li, L. (2009). Thermal processing of starch-based polymers. Progress in Polymer Science, 34(12), 1348-1368. http://dx.doi.org/10.1016/j.progpolymsci.2009.07.001.

47. Warner, M. G., Grate, J. W., Tyler, A., Ozanich, R. M., Miller, K. D., Lou, J., Marks, J. D., & Bruckner-Lea, C. J. (2009). Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosensors & Bioelectronics, 25(1), 179-184. http://dx.doi.org/10.1016/j.bios.2009.06.031. PMid:19643593.

48. Jin, X., Jin, X., Chen, L., Jiang, J., Shen, G., & Yu, R. (2009). Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B1. Biosensors & Bioelectronics, 24(8), 2580-2585. http://dx.doi.org/10.1016/j.bios.2009.01.014. PMid:19237278.

49. Luechinger, N. A., Loher, S., Athanassiou, E. K., Grass, R. N., & Stark, W. J. (2007). Highly sensitive optical detection of humidity on polymer/metal nanoparticle hybrid films. Langmuir, 23(6), 3473-3477. http://dx.doi.org/10.1021/la062424y. PMid:17279782.

50. Paschoalino, M. P., Marcone, G. P. S. & Jardim, W. F. (2010). Os nanomateriais e a questão ambiental. Química Nova, 33(2), 421-430. http://dx.doi.org/10.1590/S0100-40422010000200033.

51. Oberdorster, E., Zhu, S., Blickley, T. M., Mcclellan-Green, P., & Haasch, M. L. (2006). Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon, 44(6), 1112-1120. http://dx.doi.org/10.1016/j.carbon.2005.11.008.

52. Schlte, P. A. & Salamanca-Buentello, F. (2007). As questões éticas e científicas da nanotecnologia no local de trabalho. Ciência & Saúde Coletiva, 12(5), 1319-1332. http://dx.doi.org/10.1590/S1413-81232007000500030.

53. BRASIL. (2013, 13 de março). Projeto de Lei 5133/2013. Regulamenta a rotulagem de produtos da nanotecnologia e de produtos que fazem uso da nanotecnologia. Diário Oficial da República Federativa do Brasil, Brasília. Recuperado em 09 de dezembro de 2015. http://www2.camara.leg.br/camaranoticias/noticias/CIENCIA-E-TECNOLOGIA/448069-PROPOSTA-REGULA-ROTULAGEM-DE-NANOMATERAIS.html.

54. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311(5761), 622-627. http://dx.doi.org/10.1126/science.1114397. PMid:16456071.

55. Avella, M., De Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., & Volpe, M. G. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), 467-474. http://dx.doi.org/10.1016/j.foodchem.2004.10.024.

56. Munro, I. C., Haighton, L. A., Lynch, B. S., & Tafazoli, S. (2009). Technological challenges of addressing new and more complex migrating products from novel food packaging materials. Food Additives and Contaminants, 26(12), 1534-1546. http://dx.doi.org/10.1080/02652030902995277. PMid:19938328.

57. Cui, D., Tian, F., Ozkan, C. S., Wang, M., & Gao, H. (2005). Effect of single wall carbon nanotubes on human HEK293 cells. Toxicology Letters, 155(1), 73-85. http://dx.doi.org/10.1016/j.toxlet.2004.08.015. PMid:15585362.

58. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R., & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Additives & Contaminants: Part A, 25(3), 241-258. http://dx.doi.org/10.1080/02652030701744538. PMid:18311618.

59. Brasil. Agência Nacional de Vigilância Sanitária. (2010, 26 de novembro). Resolução no 51 de 26 de novembro de 2010. Dispõe sobre migração em materiais, embalagens e equipamentos plásticos a entrar em contato com alimentos. Diário Oficial da República Federativa do Brasil, Brasília. Recuperado em 23 de agosto de 2014, de http://portal.anvisa.gov.br/wps/portal/anvisa/anvisa/home.

60. Brasil. Ministério da Ciência, Tecnologia e Inovação. (2012, 04 de abril). Portaria no 245 de 05 de abril de 2012. Instituição do Sistema Nacional de Laboratórios em Nanotecnologia. Diário Oficial da República Federativa do Brasil, Brasília. Seção I, p. 5.

61. European Food Safety Authority – EFSA. (2011). Guidance on the risk assessment of the application of nanoscienceand, nanotechnologies in the food and feed chain. The EFSA Journal, 9(5), 1-36. doi: http://dx.doi.org/10.2903/j.efsa.2011.2140.

62. Diretiva 82/711 CEE do Conselho. (1982, 18 de outubro). Estabelece as normas básicas necessárias para verificação da migração de constituintes dos materiais de embalagem e objetos de materiais plásticos destinados a entrar em contato com produtos alimentícios. Jornal Oficial das Comunidades Européias, Luxemburgo. p. 278-282. Recuperado em 23 de agosto de 2014, de http://eur-lex.europa.eu/legal content/PT/TXT/HTML/?uri=CELEX:32006L0015&from=PT.

63. Diretiva 85/572/CEE do Conselho. (1985, 19 de dezembro). Determina a lista dos simulantes que devem ser utilizados para controlar a migração de componentes dos materiais e objetos de materiais plásticos destinados a entrar em contato com produtos alimentícios. Jornal Oficial das Comunidades Européias, Bruxelas. p. 41-48. Recuperado em 23 de agosto de 2014, de http://eur-lex.europa.eu/legal-content/PT/TXT/HTML/?uri=CELEX:31985L0572&from=ES.

64. Food Safety Authority Of Ireland. (2015). Nanotechnologyand food. Recuperado em 10 de março de 2015, de https://www.fsai.ie/nanotechologyandfood.html.

65. European Commission – EU. (2008). Regulation (EC) no 1333/2008 of the european parliament and of the council of 16 December 2008 on food additives. Recuperado em 10 de março de 2015, de http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008R1333.

66. Commission Regulation – EU. (2011, 15 de janeiro). EU no 10/2011.On plastic materials and articles intended to come in contact with food. Official Journal of the European Union. Recuperado em 29 de março de 2015, de http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2011R0010:20111230:EN:PDF.

67. Food And Drug Administration – FDA. (2014). Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. Contains Nonbinding Recommendations. Recuperado em 30 de março de 2015, de http://www.fda.gov/RegulatoryInformation/Guidances/ucm257698.htm.

68. Food Packaging Forum. (2013). Food packaging regulation in the US. Recuperado em 30 de março de 2015, de http://www.foodpackagingforum.org/food-packaging-health/regulation-on-food-packaging/food-packaging-regulation-in-the-us.

69. Food Packaging Forum. (2013). Nanomaterials. Recuperado em 30 de março de 2015, de http://www.foodpackagingforum.org/food-packaging-health/nanomaterials.

70. Food And Drug Administration – FDA. (2014). Guidance for industry: safety of nanomaterials in cosmetic products. Recuperado em 30 de março de 2015, de http://www.fda.gov/Cosmetics/GuidanceRegulation/GuidanceDocuments/ucm300886.htm.
588371ce7f8c9d0a0c8b4a87 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections