Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.2047
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Design of conformal cooling for plastic injection moulding by heat transfer simulation

Marques, Sabrina; Souza, Adriano Fagali de; Miranda, Jackson; Yadroitsau, Ihar

Downloads: 1
Views: 1174

Abstract

The cooling channels of a mold for plastic injection have to be as close as possible to the part geometry in order to ensure fast and homogeneous cooling. However, conventional methods to manufacture cooling channels (drilling) can only produce linear holes. Selective laser melting (SLM) is an additive manufacturing technique capable to manufacture complex cooling channels (known as conformal cooling). Nevertheless, because of the high costs of SLM the benefits of conformal collings are still not clear. The current work investigates two designs of conformal coolings: i) parallel circuit; ii) serial circuit. Both coolings are evaluated against to traditional cooling circuits (linear channels) by CAE simulation to produce parts of polypropylene. The results show that if the conformal cooling is not properly designed it cannot provide reasonable results. The deformation of the product can be reduced significantly after injection but the cycle time reduced not more than 6%.

Keywords

plastic injection moulding process, conformal cooling, additive manufacturing.

References

1. Duleba, B., & Greskovic, F. (2012). Conformal cooling for plastics injection moulding. Strojar, 1-5. Retrieved in 02 August 2014, from http://www.it-strojar.sk/articles/00016.pdf

2. Dimla, D. E., Camilotto, M., & Miani, F. (2005). Design and optimization of conformal cooling channels in injection moulding tools. Journal of Materials Processing Technology, 164-165, 1294-1300. http://dx.doi.org/10.1016/j.jmatprotec.2005.02.162.

3. Ching, Z. L., & Chou, M. H. (2002). Design of the cooling channels in nonrectangular plastic flat injection mold. Journal of Manufacturing Systems, 21(3), 107-186. http://dx.doi.org/10.1016/S0278-6125(02)80160-1.

4. Zhou, H., Yan, B., & Zhang, Y. (2008). 3D filling simulation of injection moulding based on the PG method. Journal of Materials Processing Technology, 204(1-3), 475-480. http://dx.doi.org/10.1016/j.jmatprotec.2008.03.017.

5. Li, C. L. (2001). A feature-based approach to injection mould cooling system design. Computer Aided Design, 33(14), 1073-1090. http://dx.doi.org/10.1016/S0010-4485(00)00144-5.

6. Li, C. L., Li, C. G., & Mok, A. C. K. (2005). Automatic layout design of plastic injection mould cooling system. Computer Aided Design, 37(7), 645-662. http://dx.doi.org/10.1016/j.cad.2004.08.003.

7. Li, C. G., & Li, C. L. (2008). Plastic injection mould cooling system design by the configuration space method. Computer Aided Design, 40(3), 334-349. http://dx.doi.org/10.1016/j.cad.2007.11.010.

8. Yadroitsev, I., & Smurov, I. (2011). Surface morphology in selective laser melting of metal powders. Physics Procedia, 12(part A), 264-270. http://dx.doi.org/10.1016/j.phpro.2011.03.034

9. Wang, Y., Yu, K.-M., Wang, C. C. L., & Zhang, Y. (2011). Automatic design of conformal cooling circuits for rapid tooling. Computer Aided Design, 43(8), 1001-1010. http://dx.doi.org/10.1016/j.cad.2011.04.011.

10. Dimitrov, D., & Moammer, A. (2010). Investigation towards the impact of conformal cooling on the performance of injection moulds for the packaging industry. Journal for New Generation Sciences, 8(1), 29-46. Retrieved in 14 June 2014, from http://reference.sabinet.co.za/webx/access/electronic_journals/newgen/newgen_v8_n1_a3.pdf

11. Hassan, H., Regnier, N., Pujos, C., Arquis, E., & Defaye, G. (2010). Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection moulding. Applied Thermal Engineering, 30(13), 1547-1557. http://dx.doi.org/10.1016/j.applthermaleng.2010.02.025.

12. Dalgarno, K. W., & Stewart, T. D. (2001). Manufacture of production injection mould tooling incorporating conformal cooling channels via indirect selective laser sintering. Proceedings of the Institution of Mechanical Engineers. Part B, Journal of Engineering Manufacture, 215(10), 1323-1332. http://dx.doi.org/10.1243/0954405011519042.

13. Ilyas, I., Taylor, C., Dalgarno, K., & Gosden, J. (2010). Design and manufacture of injection mould tool inserts produced using indirect SLS and machining processes. Rapid Prototyping Journal, 16(6), 429-440. http://dx.doi.org/10.1108/13552541011083353.

14. Hsu, F. H., Wang, H. C., Huang, C. T., & Chang, R. Y. (2013). Investigation on conformal cooling system design in injection moulding. Advances in Production Engineering & Management, 8(2), 107-115. http://dx.doi.org/10.14743/apem2013.2.158.

15. International Organization for Standardization – ISO. (2007). ISO 1873-2: plastics – polypropylene (pp) moulding and extrusion materials – part 2: preparation of test specimens and determination of properties. Geneva: ISO.

16. Daiyan, H., Andreassen, E., Grytten, F., Lyngstad, O. V., Luksepp, T., & Osnes, H. (2010). Low-velocity impact response of injection-moulded polypropylene plates – Part 1: Effects of plate thickness, impact velocity and temperature. Polymer Testing, 29(6), 648-657. http://dx.doi.org/10.1016/j.polymertesting.2010.05.003.

17. Park, H. S., & Dang, X. P. (2012). Design and simulation-based optimization of cooling channels for plastic injection mould. In C. Volosencu (Ed.), New technologies: trends, innovations and research (pp. 19-44). Rijeka: InTech. Retrieved in 16 June 2014, from http://cdn.intechopen.com/pdfs-wm/34669.pdf

18. Venerus, D. C., Schieber, J. D., Iddir, H., Guzman, J. D., & Broerman, A. W. (1999). Relaxation of anisotropic thermal diffusivity in a polymer melt following step shear strain. Physical Review Letters, 82(2), 366-369. http://dx.doi.org/10.1103/PhysRevLett.82.366.

19. Kennedy, P. (1999). CAD, CAM, & CAE. Lexington: Mouldflow Corporation.

20. Li, C. S., & Shen, Y. K. (1995). Optimum design of runner system balancing in injection moulding. International Communications in Heat and Mass Transfer, 22(2), 179-188. http://dx.doi.org/10.1016/0735-1933(95)00003-8.

21. Marques, S., Souza, A. F., Miranda, J. R., & Santos, R. F. F. (2014). Evaluating the conformal cooling system in moulds for plastic injection by CAE simulation. In Proceedings of the 9th International Conference on Industrial Tools and Material Processing Technologies. Ljubljana: Slovenian Tool and Die Development Centre. Retrieved in 14 June 2014, from http://www.met.uni-miskolc.hu/refbase/_publication_files/2014/273_FeldeI.2014_Estimationofheattransfer.pdf

22. Xu, X., Sachs, E., & Allen, S. (2001). The design of conformal cooling channels in injection molding tooling. Polymer Engineering and Science, 41(7), 1265-1279. http://dx.doi.org/10.1002/pen.10827.

23. Siegfried, M. (2009). Optimized mould temperature control procedure using DMLS. EOS Whitepaper, p. 1-10. Retrieved in 02 April 2013, from http://www.compositesworld.com/uploadedFiles/Publications/MMS/Articles/Internal/EOS_WP_DMLS2_ENG_12.pdf.

24. Rees, H. (1995). Mould engineering. Munich: Hanser.
588371ca7f8c9d0a0c8b4a76 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections