Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.1804
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Influence of the polymeric coating thickness on the electrochemical performance of Carbon Fiber/PAni composites

Fonseca, Carla Polo; Almeida, Dalva Alves de Lima; Oliveira, Mayara Camila Duarte de; Baldan, Maurício Ribeiro; Ferreira, Neidenei Gomes

Downloads: 1
Views: 982

Abstract

Carbon fiber/polyaniline composites (CF/PAni) were synthesized at three different deposition time of 30, 60 and 90 min by oxidative polymerization. The composite materials were morphologically and physically characterized by scanning electron microscopy and by Raman spectroscopy, respectively. Their electrochemical responses were analyzed by cyclic voltammetry, by galvanostatic test, and by electrochemical impedance spectroscopy. The influence of the PAni layer thickness deposited on carbon fibers for the composite formation as well as for their electrochemical properties was discussed. The CF/PAni-30 showed a nanometric thickness with more homogeneous morphology compared to those formed in deposition times of 60 and 90 min. It also showed, from the electrochemical impedance spectroscopy measurements, the lowest charge transfer resistance value associated to the its highest value for the double-layer capacitance of 180 Fg-1 making it a very strong candidate as a supercapacitor electrode.

Keywords

carbon fiber, polyaniline, composite, supercapacitors.

References

1. Hsu, C. T., Hu, C. C., Wu, T. H., Chen, J. C., & Rajkumar, M. (2014). How the electrochemical reversibility of a battery-type material affects the charge balance and performances of asymmetric supercapacitors. Electrochimica Acta, 146, 759-768. http://dx.doi.org/10.1016/j.electacta.2014.09.041.

2. Burke, A. (2007). R&D considerations for the performance and application of electrochemical capacitors. Electrochimica Acta, 53(3), 1083-1091. http://dx.doi.org/10.1016/j.electacta.2007.01.011.

3. Mastragostino, M., Arbizzani, C., & Soavi, F. (2001). Polymer-based supercapacitors. Journal of Power Sources, 97-98, 812-815. http://dx.doi.org/10.1016/S0378-7753(01)00613-9.

4. Zhang, J., Kong, L. B., Wang, B., Luo, Y. C., & Kang, L. (2009). In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors. Synthetic Metals, 159(3-4), 260-266. http://dx.doi.org/10.1016/j.synthmet.2008.09.018.

5. Lota, K., Khomenko, V., & Frackowiak, E. (2004). Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. Journal of Physics and Chemistry of Solids, 65(2-3), 295-301. http://dx.doi.org/10.1016/j.jpcs.2003.10.051.

6. Gupta, V., & Miura, N. (2006). High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Materials Letters, 60(12), 1466-1469. http://dx.doi.org/10.1016/j.matlet.2005.11.047.

7. Morvant, M. C., & Reynolds, J. R. (1998). In situ conductivity studies of poly(3,4-ethylenedioxythiophene). Synthetic Metals, 92(1), 57-61. http://dx.doi.org/10.1016/S0379-6779(98)80023-4.

8. Hung, S. L., Wen, T. C., & Gopalan, A. (2002). Application of statistical design strategies to optimize the conductivity of electrosynthesized polypyrrole. Materials Letters, 55(3), 165-170. http://dx.doi.org/10.1016/S0167-577X(01)00640-1.

9. Boara, G., & Sparpaglione, M. (1995). Synthesis of polyanilines with high electrical conductivity. Synthetic Metals, 72(2), 135-140. http://dx.doi.org/10.1016/0379-6779(94)02337-X.

10. Li, H., Wang, J., Chu, Q., Wang, Z., Zhang, F., & Wang, S. (2009). Theoretical and experimental specific capacitance of polyaniline in sulfuric acid. Journal of Power Sources, 190(2), 578-586. http://dx.doi.org/10.1016/j.jpowsour.2009.01.052.

11. Noh, K. A., Kim, D. W., Jin, C. S., Shin, K. H., Kim, J. H., & Ko, J. M. (2003). Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. Journal of Power Sources, 124(2), 593-595. http://dx.doi.org/10.1016/S0378-7753(03)00813-9.

12. Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S., & Ferraris, J. P. (1994). Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 47(1-2), 89-107. http://dx.doi.org/10.1016/0378-7753(94)80053-7.

13. Olad, A., & Gharekhani, H. (2015). Preparation and electrochemical investigation of the polyaniline/activated carbon nanocomposite for supercapacitor applications. Progress in Organic Coatings, 81, 19-26. http://dx.doi.org/10.1016/j.porgcoat.2014.12.009.

14. Jamadade, V. S., Dhawale, D. S., & Lokhande, C. D. (2010). Studies on electrosynthesized leucoemeraldine, emeraldine and pernigraniline forms of polyaniline films and their supercapacitive behavior. Synthetic Metals, 160(9-10), 955-960. http://dx.doi.org/10.1016/j.synthmet.2010.02.007.

15. Zhao, Z., Zheng, W., Yu, W., & Long, B. (2009). Electrical conductivity of poly(vinylidene fluoride)/carbon nanotube composites with a spherical substructure. Carbon, 47(8), 2118-2120. http://dx.doi.org/10.1016/j.carbon.2009.03.043.

16. Park, J. H., Ko, J. M., Park, O. O., & Kim, D. W. (2002). Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. Journal of Power Sources, 105(1), 20-25. http://dx.doi.org/10.1016/S0378-7753(01)00915-6.

17. Wu, M., Snook, G. A., Gupta, V., Shaffer, M., Fray, D. J., & Chen, G. Z. (2005). Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. Journal of Materials Chemistry, 15(23), 2297-2303. http://dx.doi.org/10.1039/b418835g.

18. Chen, G. Z., Shaffer, M. S. P., Coleby, D., Dixon, G., Zhou, W., Fray, D. J., & Windle, A. H. (2000). Carbon nanotube and polypyrrole composites: coating and doping. Advanced Materials, 12(7), 522-526. http://dx.doi.org/10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S.

19. Horng, Y. Y., Lu, Y. C., Hsu, Y. K., Chen, C. C., Chen, L. C., & Chen, K. H. (2010). Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. Journal of Power Sources, 195(13), 4418-4422. http://dx.doi.org/10.1016/j.jpowsour.2010.01.046.

20. Xinping, H., Bo, G., Guibao, W., Jiatong, W., & Chun, Z. (2013). A new nanocomposite: carbon cloth based polyaniline for an electrochemical supercapacitor. Electrochimica Acta, 111, 210-215. http://dx.doi.org/10.1016/j.electacta.2013.07.226.

21. Basnayaka, P. A., Ram, M. K., Stefanakos, L., & Kumar, A. (2013). Graphene/Polypyrrole nanocomposite as electrochemical supercapacitor electrode: electrochemical impedance studies. Graphene, 2(2), 81-87. http://dx.doi.org/10.4236/graphene.2013.22012.

22. Boukamp, B. A. (1986). A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics, 20(1), 31-44. http://dx.doi.org/10.1016/0167-2738(86)90031-7.

23. Boukamp, B. A. (1989). Equivalent Circuit: EQUIVCRT program-user’s manual (Vol. 3). Enschede: University of Twente.

24. Wu, Q., Xu, Y., Yao, Z., Liu, A., & Shi, G. (2010). Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano, 4(4), 1963-1970. http://dx.doi.org/10.1021/nn1000035. PMid:20355733.

25. Mažeikienė, R., Tomkutė, V., Kuodis, Z., Niaura, G., & Malinauskas, A. (2007). Raman spectroelectrochemical study of polyaniline and sulfonated polyaniline in solutions of different pH. Vibrational Spectroscopy, 44(2), 201-208. http://dx.doi.org/10.1016/j.vibspec.2006.09.005.

26. Antunes, E. F., Lobo, A. O., Corat, E. J., Trava-Airoldi, V. J., Martin, A. A., & Veríssimo, C. (2006). Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon, 44(11), 2202-2211. http://dx.doi.org/10.1016/j.carbon.2006.03.003.

27. Dresselhaus, M. S., Dresselhaus, G., Saito, R., & Jorio, A. (2005). Raman spectroscopy of carbon nanotubes. Physics Reports, 409(2), 47-99. http://dx.doi.org/10.1016/j.physrep.2004.10.006.

28. Ko, T.H. (1996). Raman spectrum of modified PAN-based carbon fibers during graphitization. Journal of Applied Polymer Science, 59(4), 577-580. http://dx.doi.org/10.1002/(SICI)1097-4628(19960124)59:4<577::AID-APP2>3.0.CO;2-Q.

29. Morita, K., Murata, Y., Ishitani, A., Murayama, K., Ono, T., & Nakajima, A. (1986). Characterization of commercially available PAN (polyacrylonitrile)-based carbon fibers. Pure and Applied Chemistry, 58(3), 455-68. http://dx.doi.org/10.1351/pac198658030455.

30. Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., & Kawagoe, T. (1988). Vibrational spectra and structure of polyaniline. Macromolecules, 21(5), 1297-1305. http://dx.doi.org/10.1021/ma00183a020.

31. Nascimento, G. M., Constantino, V. R. L., & Temperine, M. L. A. (2002). Spectroscopic characterization of a new type of conducting polymer-clay nanocomposite. Macromolecules, 35(20), 7535-7537. http://dx.doi.org/10.1021/ma025571l.

32. Bernard, M. C., & Goff, A. H. L. (2006). Quantitative characterization of polyaniline films using Raman spectroscopy I: Polaron lattice and bipolaron. Electrochimica Acta, 52(2), 595-603. http://dx.doi.org/10.1016/j.electacta.2006.05.039.

33. Lapkowski, M., Berrada, K., Quillard, S., Louarn, G., Lefrant, S., & Pron, A. (1995). Electrochemical oxidation of polyaniline in nonaqueous electrolytes: “in situ” raman spectroscopic studies. Macromolecules, 28(4), 1233-1238. http://dx.doi.org/10.1021/ma00108a061.

34. Yoon, S. B., Yoon, E. H., & Kim, K. B. (2011). Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-wall carbon nanotube nanocomposites for supercapacitor applications. Journal of Power Sources, 196(24), 10791-10797. http://dx.doi.org/10.1016/j.jpowsour.2011.08.107.

35. Andrade, L. S., Rocha-Filho, R. C., Bocchi, N., & Biaggio, S. R. (2004). Estudo de efeito dos sais precursores sobre as propriedades eletrocatalíticas de eletrodos de Ti-SnO2 /Sb preparados por decomposição térmica. Quimica Nova, 27(6), 866-872. http://dx.doi.org/10.1590/S0100-40422004000600005.

36. MacDonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. http://dx.doi.org/10.1016/j.electacta.2005.02.107.

37. Qaiser, A. A., Hyland, M. M., & Patterson, D. A. (2011). Membrane potential and impedance studies of polyaniline composite membranes: effects of membrane morphology. Journal of Membrane Science, 385-386, 67-75. http://dx.doi.org/10.1016/j.memsci.2011.09.025.
588371c67f8c9d0a0c8b4a63 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections