Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.1798?lang=en
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparação e avaliação de nanocompósitos de poliestireno - hidróxido duplo lamelar HDL de ZnAl – organofuncionalizado com laurato/palmitato

Preparation and evaluation of polystyrene (PS) – layered double hydroxide (LDH) ZnAl – organofunctionalized with laurate/palmitate nanocomposites

Botan, Rodrigo; Gonçalves, Núria Angelo; Moraes, Samara Boaventura de; Lona, Liliane M. F.

Downloads: 0
Views: 988

Resumo

Este trabalho descreve a síntese e caracterização de nanocompósitos de poliestireno (PS) e hidróxido duplo lamelar (HDL) formado pelos cátions de ZnAl via polimerização in situ. O HDL utilizado neste trabalho foi modificado com uma mistura de dois ânions, laurato e palmitato. Para caracterização da estrutura e morfologia dos nanocompósitos sintetizados, foram realizadas análises por difração de raios X (DRX) e microscopia eletrônica de transmissão (MET). As caracterizações térmicas, mecânicas e de flamabilidade foram realizadas via análise termogravimétrica (TGA), ensaio de flexão e ensaio de flamabilidade, respectivamente. Os resultados obtidos neste trabalho sugerem que os nanocompósitos sintetizados possuem, de uma forma geral, uma morfologia intercalada/esfoliada com melhoras em suas propriedades térmicas e mecânicas, quando comparados com o PS puro. Entretanto, não foi observado melhora na propriedade de flamabilidade.

Palavras-chave

nanocompósitos, poliestireno, hidróxido duplo lamelar, propriedade térmica, propriedade mecânica.

Abstract

This work describes the synthesis and characterization of polystyrene (PS) and layered double hydroxide (LDH) nanocomposites formed by ZnAl cations via in situ polymerization. The LDH used in this study was modified with a mixture of two anions: laurate and palmitate. The characterization of structure and morphology for the synthesized nanocomposites was developed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal, mechanical and flammability characterizations properties were carried out via thermogravimetric analysis (TGA), bending test and flammability test, respectively. The results suggest that the nanocomposites have in general intercalated/ exfoliated morphology with improvements in thermal and mechanical properties compared to the neat PS. However no significant improvement was observed on the flammability property.

Keywords

nanocomposites, polystyrene, layered double hydroxide, thermal property, mechanical property.

References

1. Botan, R., Nogueira, T. R., Wypych, F., & Lona, L. M. F. (2012). In situ synthesis, morphology, and thermal properties of polystyrene-MgAl layered double hydroxide nanocomposites. Polymer Engineering and Science, 52(8), 1754-1760. http://dx.doi.org/10.1002/pen.23122.

2. Peng, H., Tjiu, W. C., Shen, L., Huang, S., He, C., & Liu, T. (2009). Preparation and mechanical properties of exfoliated CoAl layered double hydroxide (LDH)/polyamide 6 nanocomposites by in situ polymerization. Composites Science and Technology, 69(7-8), 991-996. http://dx.doi.org/10.1016/j.compscitech.2009.01.005.

3. Esteves, A. C. C., Barros-Timmons, A. B., & Trindade, T. (2004). Nanocompósitos de matriz polimérica: estratégias de síntese de materiais híbridos. Quimica Nova, 27(5), 798-806. http://dx.doi.org/10.1590/S0100-40422004000500020.

4. Matusinovic, Z., & Wilkie, C. A. (2012). Fire retardancy and morphology of layered double hydroxide nanocomposites: a review. Journal of Materials Chemistry, 22(36), 18701. http://dx.doi.org/10.1039/c2jm33179a.

5. Nogueira, T., Botan, R., Macedo Neto, J. C., Wypych, F., & Lona, L. (2013). Effect of Layered Double Hydroxides on the Mechanical, Thermal, and Fire Properties of Poly(methyl methacrylate) Nanocomposites. Advances in Polymer Technology, 32(S1), E660-E674. http://dx.doi.org/10.1002/adv.21309.

6. Wypych, F., & Satyanarayana, K. G. (2005). Functionalization of single layers and nanofibers: a new strategy to produce polymer nanocomposites with optimized properties. Journal of Colloid and Interface Science, 285(2), 532-543. http://dx.doi.org/10.1016/j.jcis.2004.12.028. PMid:15837469

7. Paul, D. R., & Robeson, L. M. (2008). Polymer nanotechnology: Nanocomposites. Polymer, 49(15), 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017.

8. Rives, V. (2006). Layered double hydroxide: Present and future. New York: Nova Science Publishers.

9. Botan, R., Nogueira, T. R., Lona, L. M. F., & Wypych, F. (2011). Synthesis and characterization of Exfoliated Polystyrene: Layered Double Hydroxide Nanocomposites via in situ polymerization. Polímeros Ciência e Tecnologia, 21(1), 34-38. http://dx.doi.org/10.1590/S0104-14282011005000017.

10. Nyambo, C., Songtipya, P., Manias, E., Jimenez-Gasco, M. M., & Wilkie, C. A. (2008). Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fireretardancy of PMMA and PS. Journal of Materials Chemistry, 18(40), 4827. http://dx.doi.org/10.1039/b806531d.

11. Nogueira, T., Botan, R., Wypych, F., & Lona, L. (2012). Synthesis and characterization of LDHs/PMMA nanocomposites: Effect of two different intercalated anions on the mechanical and thermal properties. Journal of Applied Polymer Science, 124(3), 1764-1770. http://dx.doi.org/10.1002/app.35213.

12. Tai, Q., Chen, L., Song, L., Hu, Y., & Yuen, R. K. K. (2011). Effects of a phosphorus compound on the morphology, thermal properties, and flammability of polystyrene/MgAl-layered double hydroxide nanocomposites. Journal of Polymer Composites, 32(2), 168-176. http://dx.doi.org/10.1002/pc.21022.

13. Matusinovic, Z., Feng, J., & Wilkie, C. A. (2013). The role of dispersion of LDH in fire retardancy: The effect of different divalent metals in benzoic acid modified LDH on dispersion and fire retardant properties of polystyrene–and poly(methyl-methacrylate)–LDH–B nanocomposites. Polymer Degradation & Stability, 98(8), 1515-1525. http://dx.doi.org/10.1016/j.polymdegradstab.2013.04.007.

14. Khan, A. I., & O’Hare, D. (2002). Intercalation chemistry of layered double hydroxides: recent developments and applications. Journal of Materials Chemistry, 12(11), 3191-3198. http://dx.doi.org/10.1039/b204076j.

15. Acharya, H., Srivastava, S. K., & Bhowmick, A. K. (2007). Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: Structural characterization and properties. Composites Science and Technology, 67(13), 2807-2816. http://dx.doi.org/10.1016/j.compscitech.2007.01.030.

16. Demir, M. M., Memesa, M., Castignolles, P., & Wegner, G. (2006). PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. Macromolecular Rapid Communications, 27(10), 763-770. http://dx.doi.org/10.1002/marc.200500870.

17. Moraes, S. B., Botan, R., & Lona, L. M. F. (2014). Síntese e caracterização de nanocompósitos de poliestireno/hidroxissal lamelar. Quimica Nova, 37(1), 18. http://dx.doi.org/10.1590/S0100-40422014000100004.

18. Iyi, N., Tamura, K., & Yamada, H. (2009). One-pot synthesis of organophilic layered double hydroxides (LDHs) containing aliphatic carboxylates: extended “homogeneous precipitation” method. Journal of Colloid and Interface Science, 340(1), 67-73. http://dx.doi.org/10.1016/j.jcis.2009.08.026.PMid:19762037

19. Nhlapo, N., Motumi, T., Landman, E., Verryn, S. M. C., & Focke, W. W. (2008). Surfactant-assisted fatty acid intercalation of layered double hydroxides. Journal of Materials Science, 43(3), 1033-1043. http://dx.doi.org/10.1007/s10853-007-2251-0.

20. Nogueira, T. R., Lona, L. M. F., Mcmanus, N. T., Vivaldo-Lima, E., & Penlidis, A. (2010). Nitroxide-mediated radical copolymerization of styrene and divinylbenzene: increased polymerization rate by using TBEC as initiator. Journal of Materials Science, 45(7), 1878-1884. http://dx.doi.org/10.1007/s10853-009-4172-6.

21. Xu, Z. P., Braterman, P. S., Yu, K., Xu, H., Wang, Y., & Brinker, C. J. (2004). Unusual Hydrocarbon Chain Packing Mode and Modification of Crystallite Growth Habit in the Self-Assembled Nanocomposites Zinc−Aluminum-Hydroxide Oleate and Elaidate ( cis - and trans - [Zn 2 Al(OH) 6 (CH 3 (CH 2 ) 7 CHCH(CH 2 ) 7 COO - )] and Magnesium Analogues. Chemistry of Materials, 16(14), 2750-2756. http://dx.doi.org/10.1021/cm0497529.

22. Xu, Z. P., & Braterman, P. S. (2010). Synthesis, structure and morphology of organic layered double hydroxide (LDH) hybrids: Comparison between aliphatic anions and their oxygenated analogs. Applied Clay Science, 48(1-2), 235-242. http://dx.doi.org/10.1016/j.clay.2009.11.009.

23. Kuehn, T., & Poellmann, H. (2010). Synthesis and characterization of Zn-Al layered double hydroxides intercalated with 1- to 19-carbon carboxylic acid anions. Clays and Clay Minerals, 58(5), 596-605. http://dx.doi.org/10.1346/CCMN.2010.0580502.

24. Manzi-Nshuti, C., Chen, D., Su, S., & Wilkie, C. A. (2009). Structure–property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum. Polymer Degradation & Stability, 94(8), 1290-1297. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.021.

25. Nyambo, C., Wang, D., & Wilkie, C. A. (2009). Will layered double hydroxides give nanocomposites with polar or nonpolar polymers? Polymers for Advanced Technologies, 20(3), 332-340. http://dx.doi.org/10.1002/pat.1272.

26. Ayewah, D. O. O., Davis, D. C., Krishnamoorti, R., Lagoudas, D. C., Sue, H. J., & Willson, M. A. (2010). A surfactant dispersed SWCNT-polystyrene composite characterized for electrical and mechanical properties. Composites. Part A, Applied Science and Manufacturing, 41(7), 842-849. http://dx.doi.org/10.1016/j.compositesa.2010.02.015.

27. Nogueira, T., Botan, R., Wypych, F., & Lona, L. (2011). Study of thermal and mechanical properties of PMMA/LDHs nanocomposites obtained by in situ bulk polymerization. Composites. Part A, Applied Science and Manufacturing, 42(8), 1025-1030. http://dx.doi.org/10.1016/j.compositesa.2011.04.006.
588371bc7f8c9d0a0c8b4a37 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections