Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia

Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide): an overview

Marques, Nívia do Nascimento; Maia, Ana Maria S.; Balaban, Rosangela de Carvalho

Downloads: 0
Views: 77


A great deal of research on polymers over the past two decades has been focused on the development of stimuli-responsive polymers to obtain materials able to respond to specific surroundings. In this paper, an overview is presented of the concepts, behavior and applicability of these “smart polymers”. Polymers that are temperature- or pH-sensitive are discussed in detail, including the response mechanisms and types of macromolecules, because they are easy to handle and have a wide range of applications. Finally, the combination of pH and temperature responsive properties by means of graft copolymerization of chitosan with poly (N-isopropylacrylamide) (PNIPAM) was chosen to represent some synthetic routes and properties of dual-sensitive polymeric systems developed currently


smart polymer, thermosensitive, pH-responsive, N-isopropylacrylamide, chitosan.


1. Galaev, I. Y., & Mattiasson, B. (1999). ‘Smart’ polymers and what they could do in biotechnology and medicine. Trends in Biotechnology, 17(8), 335-340. http://dx.doi.org/10.1016/S0167-7799(99)01345-1. PMid:10407406.

2. Gil, E. S., & Hudson, S. M. (2004). Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 29(12), 1173-1222. http://dx.doi.org/10.1016/j.progpolymsci.2004.08.003.

3. Mano, J. F. (2008). Stimuli-responsive polymeric systems for biomedical applications. Advanced Engineering Materials, 10(6), 515-527. http://dx.doi.org/10.1002/adem.200700355.

4. Kumar, A., Srivastava, A., Galaev, I. Y., & Mattiasson, B. (2007). Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science, 32(10), 1205-1237. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.003.

5. Ankareddi, I., & Brazel, C. S. (2007). Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. International Journal of Pharmaceutics, 336(2), 241-247. http://dx.doi.org/10.1016/j.ijpharm.2006.11.065. PMid:17234371.

6. Mastrotto, F., Salmaso, S., Alexander, C., Mantovani, G., & Caliceti, P. (2013). Novel pH-responsive nanovectors for controlled release of ionisable drugs. Journal of Materials Chemistry: B, Materials for Biology and Medicine, 1(39), 5335-5346. http://dx.doi.org/10.1039/c3tb20360c.

7. Liu, G., Zhu, C., Xu, J., Xin, Y., Yang, T., Li, J., Shi, L., Guo, Z., & Liu, W. (2013). Thermo-responsive hollow silica microgels with controlled drug release properties. Colloids and Surfaces: B, Biointerfaces, 111(1), 7-14. http://dx.doi.org/10.1016/j.colsurfb.2013.05.027. PMid:23777787.

8. Wang, H., & Rempel, G. L. (2013). pH-responsive polymer core-shell nanospheres for drug delivery. Journal of Polymer Science: Part A, Polymer Chemistry, 51(20), 4440-4450. http://dx.doi.org/10.1002/pola.26860. PMid:24106137.

9. Kanazawa, H., Yamamoto, K., Matsushima, Y., Takai, N., Kikuchi, A., Sakurai, Y., & Okano, T. (1996). Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Analytical Chemistry, 68(1), 100-105.

10. Maharjan, P., Woonton, B. W., Bennett, L. E., Smithers, G. W., De Silva, K., & Hearn, M. T. W. (2008). Novel chromatographic separation - The potential of smart polymers. Innovative Food Science & Emerging Technologies, 9(2), 232-242. http://dx.doi.org/10.1016/j.ifset.2007.03.028.

11. Parasuraman, D., & Serpe, M. J. (2011). Poly (N-isopropylacrylamide) microgel-based assemblies for organic dye removal from water. Applied Materials and Interfaces, 3(12), 4714-4721.

12. Parasuraman, D., & Serpe, M. J. (2011). Poly (N-isopropylacrylamide) microgels for organic dye removal from water. Applied Materials and Interfaces, 3(7), 2732-2737.

13. Parasuraman, D., Leung, E., & Serpe, M. J. (2012). Poly (N-isopropylacrylamide) microgel based assemblies for organic dye removal from water: microgel diameter effects. Colloid & Polymer Science, 290(11), 1053-1064. http://dx.doi.org/10.1007/s00396-012-2620-3.

14. Wang, Y., Lu, Z., Han, Y., Feng, Y., & Tang, C. (2011). A novel thermoviscosifying water-soluble polymer for enhancing oil recovery from high-temperature and high-salinity oil reservoirs. Advanced Materials Research, 306-307, 654-657. http://dx.doi.org/10.4028/www.scientific.net/AMR.306-307.654.

15. Ashrafizadeh, M., Ahmad Ramazani, S. A., & Sadeghnejad, S. (2012). Improvement of polymer flooding using in-situ releasing of smart nano-scale coated polymer particles in porous media. Energy Exploration and Exploitation, 30(6), 915-940. http://dx.doi.org/10.1260/0144-5987.30.6.915.

16. Yan, N., Zhang, J., Yuan, Y., Chen, G. T., Dyson, P. J., Li, Z. C., & Kou, Y. (2010). Thermoresponsive polymers based on poly-vinylpyrrolidone: applications in nanoparticle catalysis. Chemical Communications, 46(10), 1631-1633. http://dx.doi.org/10.1039/b923290g. PMid:20177598.

17. Liu, J., Ma, S., Wei, Q., Jia, L., Yu, B., Wang, D., & Zhou, F. (2013). Parallel array of nanochannels grafted with polymer-brushes-stabilized Au nanoparticles for flow-through catalysis. Nanoscale, 5(23), 11894-11901. http://dx.doi.org/10.1039/c3nr03901c. PMid:24129356.

18 Tian, E., Wang, J., Zheng, Y., Song, Y., Jiang, L., & Zhu, D. (2008). Colorful humidity sensitive photonic crystal hydrogel. Journal of Materials Chemistry, 18(10), 1116-1122. http://dx.doi.org/10.1039/B717368G.

19. Ancla, C., Lapeyre, V., Gosse, I., Catargi, B., & Ravaine, V. (2011). Designed glucose-responsive microgels with selective shrinking behavior. Langmuir, 27(20), 12693-12701. http://dx.doi.org/10.1021/la202910k. PMid:21892832.

20. Valmikinathan, C. M., Chang, W., Xu, J., & Yu, X. (2012). Self assembled temperature responsive surfaces for generation of cell patches for bone tissue engineering. Biofabrication, 4(3), 035006. http://dx.doi.org/10.1088/1758-5082/4/3/035006. PMid:22914662.

21. Frisman, I., Shachaf, Y., Seliktar, D., & Bianco-Peled, H. (2011). Stimulus-responsive hydrogels made from biosynthetic fibrinogen conjugates for tissue engineering: structural characterization. Langmuir, 27(11), 6977-6986. http://dx.doi.org/10.1021/la104695m. PMid:21542599.

22. Beija, M., Marty, J. D., & Destarac, M. (2011). Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. Chemical Communications, 47(10), 2826-2828. http://dx.doi.org/10.1039/c0cc05184e. PMid:21240412.

23. Pelton, R. (2010). Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. Journal of Colloid and Interface Science, 348(2), 673-674. http://dx.doi.org/10.1016/j.jcis.2010.05.034. PMid:20605160.

24. Brun-Graeppi, A. K. A. S., Richard, C., Bessodes, M., Scherman, D., & Merten, O. W. (2010). Thermoresponsive surfaces for cell culture and enzyme-free cell detachment. Progress in Polymer Science, 35(11), 1311-1324. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.007.

25. Riskin, M., Basnar, B., Huang, Y., & Willner, I. (2007). Magnetoswitchable charge transport and bioelectrocatalysis using maghemite-Au core-shell nanoparticle/polyaniline composites. Advanced Materials, 19(18), 2691-2695. http://dx.doi.org/10.1002/adma.200602971.

26. Fernández-Barbero, A., Suárez, I. J., Sierra-Martín, B., Fernández-Nieves, A., de Las Nieves, F. J., Marquez, M., Rubio-Retama, J., & López-Cabarcos, E. (2009). Gels and microgels for nanotechnological applications. Advances in Colloid and Interface Science, 147-148(0), 88-108. http://dx.doi.org/10.1016/j.cis.2008.12.004. PMid:19217018.

27. Zhao, Y. (2012). Light-responsive block copolymer micelles. Macromolecules, 45(9), 3647-3657. http://dx.doi.org/10.1021/ma300094t.

28. Li, Y., Heo, H. J., Gao, G. H., Kang, S. W., Huynh, C. T., Kim, M. S., Lee, J. W., Lee, J. H., & Lee, D. S. (2011). Synthesis and characterization of an amphiphilic graft polymer and its potential as a pH-sensitive drug carrier. Polymer, 52(15), 3304-3310. http://dx.doi.org/10.1016/j.polymer.2011.05.049.

29. Zhao, C., Nie, S., Tang, M., & Sun, S. (2011). Polymeric pH-sensitive membranes - A review. Progress in Polymer Science, 36(11), 1499-1520. http://dx.doi.org/10.1016/j.progpolymsci.2011.05.004.

30. Zhou, J., Wang, G., Hu, J., Lu, X., & Li, J. (2006). Temperature, ionic strength and pH induced electrochemical switching of smart polymer interfaces. Chemical Communications, (46), 4820-4822. http://dx.doi.org/10.1039/b611405a. PMid:17345740.

31. Ulijn, R. V. (2006). Enzyme-responsive materials: A new class of smart biomaterials. Journal of Materials Chemistry, 16(23), 2217-2225. http://dx.doi.org/10.1039/b601776m.

32. Miyata, T., Asami, N., & Uragami, T. (1999). A reversibly antigen-responsive hydrogel. Nature, 399(6738), 766-769. http://dx.doi.org/10.1038/21619. PMid:10391240.

33. Wang, Y., Wang, J., Ge, L., Liu, Q., Jiang, L., Zhu, J., Zhou, J., & Xiong, F. (2013). Synthesis, properties and self-assembly of intelligent core-shell nanoparticles based on chitosan with different molecular weight and N-isopropylacrylamide. Journal of Applied Polymer Science, 127(5), 3749-3759. http://dx.doi.org/10.1002/app.37648.

34. Inoue, M., Noda, K., & Yusa, S. I. (2012). Hollow nanoparticles prepared from pH-responsive template polymer micelles. Journal of Polymer Science: Part A, Polymer Chemistry, 50(13), 2596-2603. http://dx.doi.org/10.1002/pola.26056.

35. Schwarz, S., Ponce-Vargas, S. M., Licea-Claverie, A., & Steinbach, C. (2012). Chitosan and mixtures with aqueous biocompatible temperature sensitive polymer as flocculants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413(5), 7-12. http://dx.doi.org/10.1016/j.colsurfa.2012.03.048.

36. Hamcerencu, M., Desbrieres, J., Popa, M., & Riess, G. (2012). Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone. Carbohydrate Polymers, 89(2), 438-447. http://dx.doi.org/10.1016/j.carbpol.2012.03.026. PMid:24750741.

37. Sá-Lima, H., Caridade, S. G., Mano, J. F., & Reis, R. L. (2010). Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 6(20), 5184-5195. http://dx.doi.org/10.1039/c0sm00041h.

38. Seal, B. L., & Panitch, A. (2006). Viscoelastic behavior of environmentally sensitive biomimetic polymer matrices. Macromolecules, 39(6), 2268-2274. http://dx.doi.org/10.1021/ma0524528.

39. Yang, X., Chen, L., Huang, B., Bai, F., & Yang, X. (2009). Synthesis of pH-sensitive hollow polymer microspheres and their application as drug carriers. Polymer, 50(15), 3556-3563. http://dx.doi.org/10.1016/j.polymer.2009.06.027.

40. Chuang, C. Y., Don, T. M., & Chiu, W. Y. (2011). Preparation of environmental-responsive chitosan-based nanoparticles by self-assembly method. Carbohydrate Polymers, 84(2), 765-769. http://dx.doi.org/10.1016/j.carbpol.2010.01.053.

41. Li, L., Xing, X., & Liu, Z. (2012). Triply-responsive (thermo/light/pH) copolymeric hydrogel of N-isopropylacrylamide with an azobenzene-containing monomer. Journal of Applied Polymer Science, 124(2), 1128-1136. http://dx.doi.org/10.1002/app.35036.

42. Bhattacharya, S., Eckert, F., Boyko, V., & Pich, A. (2007). Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small, 3(4), 650-657. http://dx.doi.org/10.1002/smll.200600590. PMid:17340664.

43. Bao, H., Li, L., Gan, L. H., Ping, Y., Li, J., & Ravi, P. (2010). Thermo-and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules, 43(13), 5679-5687. http://dx.doi.org/10.1021/ma100894p.

44. Sun, G., Zhang, X. Z., & Chu, C. C. (2007). Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity. Journal of Materials Science: Materials in Medicine, 18(8), 1563-1577. http://dx.doi.org/10.1007/s10856-007-3030-9. PMid:17483901.

45. Yu, X., Yang, X., Horte, S., Kizhakkedathu, J. N., & Brooks, D. E. (2014). A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment. Biomaterials, 35(1), 278-286. http://dx.doi.org/10.1016/j.biomaterials.2013.09.052. PMid:24112803.

46. Asmarandei, I., Fundueanu, G., Cristea, M., Harabagiu, V., & Constantin, M. (2013). Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/ carboxymethyl pullulan network for drug delivery. Journal of Polymer Research, 20(11), 293. http://dx.doi.org/10.1007/s10965-013-0293-3.

47. Chen, C. Y., Kim, T. H., Wu, W. C., Huang, C. M., Wei, H., Mount, C. W., Tian, Y., Jang, S. H., Pun, S. H., & Jen, A. K. Y. (2013). pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 34(18), 4501-4509. http://dx.doi.org/10.1016/j.biomaterials.2013.02.049. PMid:23498892.

48. Kanazawa, R., Sasaki, A., & Tokuyama, H. (2012). Preparation of dual temperature/pH-sensitive polyampholyte gels and investigation of their protein adsorption behaviors. Separation and Purification Technology, 96(21), 26-32. http://dx.doi.org/10.1016/j.seppur.2012.05.016.

49. Zschoche, S., Rueda, J. C., Binner, M., Komber, H., Janke, A., Arndt, K. F., Lehmann, S., & Voit, B. (2012). Reversibly switchable pH- and thermoresponsive core-shell nanogels based on poly(NiPAAm)-graft-poly(2-carboxyethyl-2-oxazoline)s. Macromolecular Chemistry and Physics, 213(2), 215-226. http://dx.doi.org/10.1002/macp.201100388.

50. Zhou, W., An, X., Gong, J., Shen, W., Chen, Z., & Wang, X. (2011). Synthesis, characteristics, and phase behavior of a thermosensitive and pH-sensitive polyelectrolyte. Journal of Applied Polymer Science, 121(4), 2089-2097. http://dx.doi.org/10.1002/app.33833.

51. Tu, Y. L., Wang, C. C., & Chen, C. Y. (2011). Synthesis and characterization of pH-sensitive and thermosensitive double hydrophilic graft copolymers. Journal of Polymer Science. Part A, Polymer Chemistry, 49(13), 2866-2877. http://dx.doi.org/10.1002/pola.24721.

52. Chen, J., Liu, M., Liu, H., Ma, L., Gao, C., Zhu, S., & Zhang, S. (2010). Synthesis and properties of thermo- and pH-sensitive poly(diallyldimethylammonium chloride)/poly(N,N-diethylacrylamide) semi-IPN hydrogel. Chemical Engineering Journal, 159(1-3), 247-256. http://dx.doi.org/10.1016/j.cej.2010.02.034.

53. Sun, X., Jiang, G., Wang, Y., & Xu, Y. (2011). Synthesis and drug release properties of novel pH- and temperature- sensitive copolymers based on a hyperbranched polyether core. Colloid & Polymer Science, 289(5-6), 677-684. http://dx.doi.org/10.1007/s00396-010-2314-7.

54. Sun, X., Shi, J., Zhang, Z., & Cao, S. (2011). Dual-responsive semi-interpenetrating network beads based on calcium alginate/poly(N-isopropylacrylamide)/poly(sodium acrylate) for sustained drug release. Journal of Applied Polymer Science, 122(2), 729-737. http://dx.doi.org/10.1002/app.33872.

55. París, R., García, J., & Quijada-Garrido, I. (2011). Thermo- and pH-sensitive hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and methacrylic acid. Polymer International, 60(2), 178-185. http://dx.doi.org/10.1002/pi.2924.

56. Medeiros, S. F., Santos, A. M., Fessi, H., & Elaissari, A. (2011). Stimuli-responsive magnetic particles for biomedical applications. International Journal of Pharmaceutics, 403(1-2), 139-161. http://dx.doi.org/10.1016/j.ijpharm.2010.10.011. PMid:20951779.

57. Taşdelen, B., Kayaman-Apohan, N., Güven, O., & Baysal, B. M. (2004). pH-thermoreversible hydrogels. I. Synthesis and characterization of poly(N-isopropylacrylamide/maleic acid) copolymeric hydrogels. Radiation Physics and Chemistry, 69(4), 303-310. http://dx.doi.org/10.1016/j.radphyschem.2003.07.004.

58. Carreira, A. S., Goncalves, F. A. M. M., Mendonca, P. V., Gil, M. H., & Coelho, J. F. J. (2010). Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers, 80(3), 618-630.

59. Dimitrov, I., Trzebicka, B., Müller, A. H. E., Dworak, A., & Tsvetanov, C. B. (2007). Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Progress in Polymer Science, 32(11), 1275-1343. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.001.

60. Wei, H., Cheng, S.-X., Zhang, X.-Z., & Zhuo, R.-X. (2009). Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 34(9), 893-910. http://dx.doi.org/10.1016/j.progpolymsci.2009.05.002.

61. Bajpai, A. K., Shukla, S. K., Bhanu, S., & Kankane, S. (2008). Responsive polymers in controlled drug delivery. Progress in Polymer Science, 33(11), 1088-1118. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005.

62. Bajpai, A., Shukla, S., Saini, R. & Tiwari, A. (2010). Stimule responsive drug delivery systems: from introduction to application. Shawbury: iSmithers.

63. Chaterji, S., Kwon, I. K., & Park, K. (2007). Smart polymeric gels: Redefining the limits of biomedical devices. Progress in Polymer Science, 32(8-9), 1083-1122. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.018. PMid:18670584.

64. Chen, T., Ferris, R., Zhang, J., Ducker, R., & Zauscher, S. (2010). Stimulus-responsive polymer brushes on surfaces: Transduction mechanisms and applications. Progress in Polymer Science, 35(1-2), 94-112. http://dx.doi.org/10.1016/j.progpolymsci.2009.11.004.

65. Liu, R., Fraylich, M., & Saunders, B. R. (2009). Thermoresponsive copolymers: From fundamental studies to applications. Colloid & Polymer Science, 287(6), 627-643. http://dx.doi.org/10.1007/s00396-009-2028-x.

66. Weber, C., Hoogenboom, R., & Schubert, U. S. (2012). Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Progress in Polymer Science, 37(5), 686-714. http://dx.doi.org/10.1016/j.progpolymsci.2011.10.002.

67. Schmaljohann, D. (2006). Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 58(15), 1655-1670. http://dx.doi.org/10.1016/j.addr.2006.09.020. PMid:17125884.

68. Snowden, M. J., Thomas, D., & Vincent, B. (1993). Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst, 118(11), 1367-1369. http://dx.doi.org/10.1039/an9931801367.

69. Kanazawa, H., Yamamoto, K., Matsushima, Y., Takai, N., Kikuchi, A., Sakurai, Y., & Okano, T. (1996). Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Analytical Chemistry, 68(1), 100-105. http://dx.doi.org/10.1021/ac950359j. PMid:21619225.

70. Palai, T., Kumar, A., & Bhattacharya, P. K. (2014). Synthesis and characterization of thermo-responsive poly-N-isopropylacrylamide bioconjugates for application in the formation of galacto-oligosaccharides. Enzyme and Microbial Technology, 55, 40-49. http://dx.doi.org/10.1016/j.enzmictec.2013.12.003. PMid:24411444.

71. Hopkins, S., Carter, S. R., Haycock, J. W., Fullwood, N. J., MacNeil, S., & Rimmer, S. (2009). Sub-micron poly(N-isopropylacrylamide) particles as temperature responsive vehicles for the detachment and delivery of human cells. Soft Matter, 5(24), 4928-4937. http://dx.doi.org/10.1039/b909656f.

72. Costa, R. O. R., & Freitas, R. F. S. (2002). Phase behavior of poly(N-isopropylacrylamide) in binary aqueous solutions. Polymer, 43(22), 5879-5885. http://dx.doi.org/10.1016/S0032-3861(02)00507-4.

73. Sousa, R. G., & Freitas, R. F. S. (1995). Determinação do diagrama de fases do gel termossensível poli(N-isopropilacrilamida). Polímeros: Ciência e Tecnologia, 5(3), 32-37.

74. Feijó, F. D., Magalhães, W. F., Freitas, R. F. S., & Sousa, R. G. (1999). Estudo da influência das concentrações de monômero principal e de agente reticulante na estrutura do gel poli(N-isopropilacrilamida) através de espectroscopia de aniquilação de pósitrons. Polímeros: Ciência e Tecnologia, 9(4), 33-38. http://dx.doi.org/10.1590/S0104-14281999000400006.

75. Ortega, J. A. C. (2013). Síntesis de hidrogeles termosensibles de poli(N isopropilacrilamida)-co-poli(N,N,-dimetilacrilamida). Polímeros: Ciência e Tecnologia, 23(2), 189-195. http://dx.doi.org/10.4322/polimeros.2013.080.

76. Uğuzdoğan, E., & Kabasakal, O. S. (2010). Synthesis and characterization of thermally-sensitive polymer: Poly(aminomethoxypropylacrylamide). Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 368(1-3), 129-136. http://dx.doi.org/10.1016/j.colsurfa.2010.07.026.

77. Schild, H. G. (1992). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 17(2), 163-249. http://dx.doi.org/10.1016/0079-6700(92)90023-R.

78. Recillas, M., Silva, L. L., Peniche, C., Goycoolea, F. M., Rinaudo, M., & Argüelles-Monal, W. M. (2009). Thermoresponsive behavior of chitosan-g-N-isopropylacrylamide copolymer solutions. Biomacromolecules, 10(6), 1633-1641. http://dx.doi.org/10.1021/bm9002317. PMid:19364095.

79. Cole, M. A., Voelcker, N. H., Thissen, H., & Griesser, H. J. (2009). Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials, 30(9), 1827-1850. http://dx.doi.org/10.1016/j.biomaterials.2008.12.026. PMid:19144401.

80. Han, J., Wang, K., Yang, D., & Nie, J. (2009). Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. International Journal of Biological Macromolecules, 44(3), 229-235. http://dx.doi.org/10.1016/j.ijbiomac.2008.12.009. PMid:19146871.

81. Al-Manasir, N., Zhu, K., Kjøniksen, A. L., Knudsen, K. D., Karlsson, G., & Nyström, B. (2009). Effects of temperature and pH on the contraction and aggregation of microgels in aqueous suspensions. The Journal of Physical Chemistry B, 113(32), 11115-11123. http://dx.doi.org/10.1021/jp901121g. PMid:19618921.

82. Chan, K., Pelton, R., & Zhang, J. (1999). On the formation of colloidally dispersed phase-separated poly(N-isopropylacrylamide). Langmuir, 15(11), 4018-4020. http://dx.doi.org/10.1021/la9812673.

83. Kujawa, P., Aseyev, V., Tenhu, H., & Winnik, F. M. (2006). Temperature-sensitive properties of poly(N-isopropylacrylamide) mesoglobules formed in dilute aqueous solutions heated above their demixing point. Macromolecules, 39(22), 7686-7693. http://dx.doi.org/10.1021/ma061604b.

84. Durand, A., & Hourdet, D. (1999). Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly(N-isopropylacrylamide) side chains. Polymer, 40(17), 4941-4951. http://dx.doi.org/10.1016/S0032-3861(98)00698-3.

85. Hofmann, C., & Schönhoff, M. (2009). Do additives shift the LCST of poly (N-isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid & Polymer Science, 287(12), 1369-1376. http://dx.doi.org/10.1007/s00396-009-2103-3.

86. Schild, H. G., & Tirrell, D. A. (1990). Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions. Journal of Physical Chemistry, 94(10), 4352-4356. http://dx.doi.org/10.1021/j100373a088.

87. Durand, A., & Hourdet, D. (2000). Thermoassociative graft copolymers based on poly(N-isopropylacrylamide): effect of added co-solutes on the rheological behavior. Polymer, 41(2), 545-557. http://dx.doi.org/10.1016/S0032-3861(99)00212-8.

88. Dumitriu, R. P., Mitchell, G. R., & Vasile, C. (2011). Rheological and thermal behaviour of poly(N-isopropylacrylamide)/alginate smart polymeric networks. Polymer International, 60(9), 1398-1407.

89. Rubira, A. F., Muniz, E. C., Guilherme, M. R., Paulino, A. T., & Tambourgi, E. B. (2009). Morphology of temperature-sensitive and pH-responsive IPN-hydrogels for application as biomaterial for cell growth. Polímeros: Ciência e Tecnologia, 19(2), 105-110. http://dx.doi.org/10.1590/S0104-14282009000200006.

90. Lü, S., Liu, M., & Ni, B. (2011). Degradable, injectable poly(N-isopropylacrylamide)-based hydrogels with low gelation concentrations for protein delivery application. Chemical Engineering Journal, 173(1), 241-250. http://dx.doi.org/10.1016/j.cej.2011.07.052.

91. Bokias, G., Mylonas, Y., Staikos, G., Bumbu, G. G., & Vasile, C. (2001). Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone. Macromolecules, 34(14), 4958-4964. http://dx.doi.org/10.1021/ma010154e.

92. Alvarez-Lorenzo, C., Blanco-Fernandez, B., Puga, A. M., & Concheiro, A. (2013). Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Advanced Drug Delivery Reviews, 65(9), 1148-1171. http://dx.doi.org/10.1016/j.addr.2013.04.016. PMid:23639519.

93. Kimura, I. Y., Gonçalves, A. C., Jr,, Stolberg, J., Laranjeira, M. C. M., & Fávere, V. T. (1999). Efeito do pH e do tempo de contato na adsorção de corantes reativos por microesferas de quitosana. Polímeros: Ciência e Tecnologia, 9(3), 51-57. http://dx.doi.org/10.1590/S0104-14281999000300010.

94. Oliveira, S. P. D., Mahl, C. R. A., Simões, M. R., & Silva, C. F. (2012). Chitosan as flocculant agent for clarification of stevia extract. Polímeros: Ciência e Tecnologia, 22(4), 401-406. http://dx.doi.org/10.1590/S0104-14282012005000066.

95. Maciel, V. B. V., Franco, T. T., & Yoshida, C. M. P. (2012). Alternative intelligent material for packaging using chitosan films as colorimetric temperature indicators. Polímeros: Ciência e Tecnologia, 22(4), 318-324. http://dx.doi.org/10.1590/S0104-14282012005000054.

96. Josué, A., Laranjeira, M. C. M., Fávere, V. T., Kimura, I. Y., & Pedrosa, R. C. (2000). Controlled release of eosin impregnated in microspheres of chitosan/poly(acrylic acid) copolymer. Polímeros: Ciência e Tecnologia, 10(3), 116-121.

97. Gonçalves, V. L., Laranjeira, M. C. M., Fávere, V. T., & Pedrosa, R. C. (2005). Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polímeros: Ciência e Tecnologia, 15(1), 6-12. http://dx.doi.org/10.1590/S0104-14282005000100005.

98. Grem, I. C. S., Lima, B. N. B., Carneiro, W. F., Queirós, Y. G. C., & Mansur, C. R. E. (2013). Chitosan microspheres applied for removal of oil from produced water in the oil industry. Polímeros: Ciência e Tecnologia, 23(6), 705-711. http://dx.doi.org/10.4322/polimeros.2014.008.

99. Fernandes, L. L., Resende, C. X., Tavares, D. S., Soares, G. A., Castro, L. O., & Granjeiro, J. M. (2011). Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering. Polímeros: Ciência e Tecnologia, 21(1), 1-6. http://dx.doi.org/10.1590/S0104-14282011005000008.

100. Campana, S. P., Fo., & Signini, R. (2001). Efeito de aditivos na desacetilação de quitina. Polímeros: Ciência e Tecnologia, 11(4), 169-173. http://dx.doi.org/10.1590/S0104-14282001000400006.

101. Santos, J. E., Soares, J. P., Dockal, E. R., Campana, S. P., Fo., & Cavalheiro, É. T. G. (2003). Characterization of commercial chitosan from different suppliers. Polímeros: Ciência e Tecnologia, 13(4), 242-249.

102. Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan - A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981-1014. http://dx.doi.org/10.1016/j.progpolymsci.2011.02.001.

103. Kasaai, M. R. (2009). Various methods for determination of the degree of N-acetylation of chitin and chitosan: a review. Journal of Agricultural and Food Chemistry, 57(5), 1667-1676. http://dx.doi.org/10.1021/jf803001m. PMid:19187020.

104. Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641-678. http://dx.doi.org/10.1016/j.progpolymsci.2009.04.001.

105. Abreu, F. O. M. S., Cavalcante, L. G., Doudement, P. V., Castro, A. M., Nascimento, A. P., & Matos, J. E. X. (2013). Development of new method to obtain chitosan from the exoskeleton of crabs using microwave radiation. Polímeros: Ciência e Tecnologia, 23(5), 630-635. http://dx.doi.org/10.4322/polimeros.2013.042.

106. Rinauldo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3), 397-430. http://dx.doi.org/10.1002/pi.2378.

107. Fernandes, S. C. M., Freire, C. S. R., Silvestre, A. J. D., Pascoal, C., No., & Gandini, A. (2011). Novel materials based on chitosan and cellulose. Polymer International, 60(6), 875-882. http://dx.doi.org/10.1002/pi.3024.

108. Martins, G. V., Mano, J. F., & Alves, N. M. (2011). Dual responsive nanostructured surfaces for biomedical applications. Langmuir, 27(13), 8415-8423. http://dx.doi.org/10.1021/la200832n. PMid:21639130.

109. Goy, R. C., Britto, D., & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros: Ciência e Tecnologia, 19(3), 241-247. http://dx.doi.org/10.1590/S0104-14282009000300013.

110. Torres, M. A., Vieira, R. S., Beppu, M. M., & Santana, C. C. (2005). Production and characterization of chemically modified chitosan microspheres. Polímeros: Ciência e Tecnologia, 15(4), 306-312. http://dx.doi.org/10.1590/S0104-14282005000400016.

111. Bao, H., Li, L., Leong, W. C., & Gan, L. H. (2010). Thermo-responsive association of chitosan-graft-poly(N-isopropylacrylamide) in aqueous solutions. The Journal of Physical Chemistry B, 114(32), 10666-10673. http://dx.doi.org/10.1021/jp105041z. PMid:20734475.

112. Seetapan, N., Mai-ngam, K., Plucktaveesak, N., & Sirivat, A. (2006). Linear viscoelasticity of thermoassociative chitosan-g-poly(N-isopropylacrylamide) copolymer. Rheologica Acta, 45(6), 1011-1018. http://dx.doi.org/10.1007/s00397-005-0055-1.

113. Huang, C. H., Wang, C. F., Don, T. M., & Chiu, W. Y. (2013). Preparation of pH- and thermo-sensitive chitosan-PNIPAAm core-shell nanoparticles and evaluation as drug carriers. Cellulose (London, England), 20(4), 1791-1805. http://dx.doi.org/10.1007/s10570-013-9951-1.

114. Li, G., Guo, L., Wen, Q., & Zhang, T. (2013). Thermo- and pH-sensitive ionic-crosslinked hollow spheres from chitosan-based graft copolymer for 5-fluorouracil release. International Journal of Biological Macromolecules, 55, 69-74. http://dx.doi.org/10.1016/j.ijbiomac.2012.12.048. PMid:23313823.

115. Prabaharan, M., & Mano, J. F. (2006). Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials. Macromolecular Bioscience, 6(12), 991-1008. http://dx.doi.org/10.1002/mabi.200600164. PMid:17128423.

116. Mao, Z., Ma, L., Yan, J., Yan, M., Gao, C., & Shen, J. (2007). The gene transfection efficiency of thermoresponsive N,N,N-trimethyl chitosan chloride-g-poly(N-isopropylacrylamide) copolymer. Biomaterials, 28(30), 4488-4500. http://dx.doi.org/10.1016/j.biomaterials.2007.06.033. PMid:17640726.

117. Lee, E. J., & Kim, Y. H. (2010). Synthesis and thermo-responsive properties of chitosan-g-poly (N-isopropylacrylamide) and HTCC-g-poly(N-isopropylacrylamide) copolymers. Fibers and Polymers, 11(2), 164-169. http://dx.doi.org/10.1007/s12221-010-0164-z.

118. Rejinold, N. S., Sreerekha, P. R., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2011). Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. International Journal of Biological Macromolecules, 49(2), 161-172. http://dx.doi.org/10.1016/j.ijbiomac.2011.04.008. PMid:21536066.

119. Saitoh, T., Sugiura, Y., Asano, K., & Hiraide, M. (2009). Chitosan-conjugated thermo-responsive polymer for the rapid removal of phenol in water. Reactive & Functional Polymers, 69(10), 792-796. http://dx.doi.org/10.1016/j.reactfunctpolym.2009.06.011.

120. Saitoh, T., Asano, K., & Hiraide, M. (2011). Removal of phenols in water using chitosan-conjugated thermo-responsive polymers. Journal of Hazardous Materials, 185(2-3), 1369-1373. http://dx.doi.org/10.1016/j.jhazmat.2010.10.057. PMid:21074940.

121. Jung, H., Jang, M.-K., Nah, J., & Kim, Y.-B. (2009). Synthesis and characterization of thermosensitive nanoparticles based on PNIPAAm core and chitosan shell structure. Macromolecular Research, 17(4), 265-270. http://dx.doi.org/10.1007/BF03218690.

122. Don, T. M., & Chen, H. R. (2005). Synthesis and characterization of AB-crosslinked graft copolymers based on maleilated chitosan and N-isopropylacrylamide. Carbohydrate Polymers, 61(3), 334-347. http://dx.doi.org/10.1016/j.carbpol.2005.05.025.

123. Cai, H., Zhang, Z. P., Sun, P. C., He, B. L., & Zhu, X. X. (2005). Synthesis and characterization of thermo- and pH- sensitive hydrogels based on Chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiation Physics and Chemistry, 74(1), 26-30. http://dx.doi.org/10.1016/j.radphyschem.2004.10.007.

124. Fan, J., Chen, J., Yang, L., Lin, H., & Cao, F. (2009). Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly(N-isopropylacrylamide) by electron beam radiation. Bulletin of Materials Science, 32(5), 521-526. http://dx.doi.org/10.1007/s12034-009-0077-x.

125. Zhao, S. P., Zhou, F., & Li, L. Y. (2012). pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release profiles. Journal of Polymer Research, 19(9), 9944. http://dx.doi.org/10.1007/s10965-012-9944-z.

126. Chung, H. J., Bae, J. W., Park, H. D., Lee, J. W., & Park, K. D. (2005). Thermosensitive chitosans as novel injectable biomaterials. Macromolecular Symposia, 224(1), 275-286. http://dx.doi.org/10.1002/masy.200550624.

127. Pourjavadi, A., Mahdavinia, G. R., Zohuriaan-Mehr, M. J., & Omidian, H. (2003). Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile. Journal of Applied Polymer Science, 88(8), 2048-2054. http://dx.doi.org/10.1002/app.11820.

128. Caner, H., Yilmaz, E., & Yilmaz, O. (2007). Synthesis, characterization and antibacterial activity of poly(N-vinylimidazole) grafted chitosan. Carbohydrate Polymers, 69(2), 318-325. http://dx.doi.org/10.1016/j.carbpol.2006.10.008.

129. Joshi, J. M., & Sinha, V. K. (2006). Graft copolymerization of 2-hydroxyethylmethacrylate onto carboxymethyl chitosan using CAN as an initiator. Polymer, 47(6), 2198-2204. http://dx.doi.org/10.1016/j.polymer.2005.11.050.

130. Najjar, A. M. K., Yunus, W. M. Z. W., Ahmad, M. B., & Rahman, M. Z. A. (2000). Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid) grafted chitosan using potassium persulfate as redox initiator. Journal of Applied Polymer Science, 77(10), 2314-2318. http://dx.doi.org/10.1002/1097-4628(20000906)77:10<2314::AID-APP25>3.0.CO;2-7.

131. Prashanth, K. V. H., & Tharanathan, R. N. (2003). Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydrate Polymers, 54(3), 343-351. http://dx.doi.org/10.1016/S0144-8617(03)00191-7.

132. Mun, G. A., Nurkeeva, Z. S., Dergunov, S. A., Nam, I. K., Maimakov, T. P., Shaikhutdinov, E. M., Lee, S. C., & Park, K. (2008). Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. Reactive & Functional Polymers, 68(1), 389-395. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.07.012.

133. Ganji, F., & Abdekhodaie, M. J. (2008). Synthesis and characterization of a new thermosensitive chitosan–PEG diblock copolymer. Carbohydrate Polymers, 74(3), 435-441. http://dx.doi.org/10.1016/j.carbpol.2008.03.017.

134. Duan, C., Zhang, D., Wang, F., Zheng, D., Jia, L., Feng, F., Liu, Y., Wang, Y., Tian, K., Wang, F., & Zhang, Q. (2011). Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. International Journal of Pharmaceutics, 409(1-2), 252-259. http://dx.doi.org/10.1016/j.ijpharm.2011.02.050. PMid:21356283.

135. Nascimento, N. N., Curti, P. S., Maia, A. M. S., & Balaban, R. C. (2013). Temperature and pH effects on the stability and rheological behavior of the aqueous suspensions of smart polymers based on N-isopropylacrylamide, chitosan, and acrylic acid. Journal of Applied Polymer Science, 129(1), 334-345. http://dx.doi.org/10.1002/app.38750.

136. Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymer-based microgels/nanogels for drug delivery applications. Progress in Polymer Science, 34(12), 1261-1282. http://dx.doi.org/10.1016/j.progpolymsci.2009.08.001.

137. Cayre, O. J., Chagneux, N., & Biggs, S. (2011). Stimulus responsive core-shell nanoparticles: Synthesis and applications of polymer based aqueous systems. Soft Matter, 7(6), 2211-2234. http://dx.doi.org/10.1039/C0SM01072C.

138. Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32(1), 93-146. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.002.

139. Chen, C., Liu, M., Gao, C., Lü, S., Chen, J., Yu, X., Ding, E., Yu, C., Guo, J., & Cui, G. (2013). A convenient way to synthesize comb-shaped chitosan-graft-poly (N-isopropylacrylamide) copolymer. Carbohydrate Polymers, 92(1), 621-628. http://dx.doi.org/10.1016/j.carbpol.2012.09.014. PMid:23218344.
588371c07f8c9d0a0c8b4a4a polimeros Articles
Links & Downloads


Share this page
Page Sections