Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.15616
Polímeros: Ciência e Tecnologia
Original Article

Layer-by-Layer technique employed to construct multitask interfaces in polymer composites

Vitorino, Luísa Sá; Oréfice, Rodrigo Lambert

Downloads: 0
Views: 59

Abstract

The properties of glass fiber-reinforced polymer composites are closely related to the fiber-matrix interface. Interfacial treatments to improve mechanical properties are usually limited to enhance interfacial adhesion. In this work, Layer-by-Layer (LbL) technique was introduced to build a novel interface in polymer composites. Different numbers of bilayers of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate) with carbon nanotubes were deposited through LbL on the surface of woven glass fibers (GFs). Polypropylene composites containing the modified GFs were prepared by compression molding. Thermogravimetric analysis, scanning electron microscopy and Raman spectroscopy proved that multilayers of polymers with carbon nanotubes could be deposited on GFs surface. Mechanical tests on composites with modified GFs revealed an increase in Flexural Modulus and toughness. The overall results attested that the LbL technique can be used to design interfaces with different compositions to perform diverse tasks, such as to improve the stiffness of composites and to encapsulate active nanocomponents.

Keywords

carbon nanotubes, composites, glass fibers, interface, layer-by-layer.

References

1. Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., Van Vuure, A. W., Lomov, S. V., & Verpoest, I. (2010). Interfacial shear strength of a glass fibre/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Technology, 70(9), 1346-1352. http://dx.doi.org/10.1016/j.compscitech.2010.04.010.

2. Meiners, A., Ohms, G., Leck, M., Vetter, U., & Abel, B. (2012). Modifying glass fiber size by plasma treatment. Journal of Adhesion Science and Technology, 26(10-11), 1611-1627. http://dx.doi.org/10.1163/156856111x618443.

3. Zinck, P., Pay, M. F., Rezakhanlou, R., & Gerard, J. F. (1999). Mechanical characterisation of glass fibres as an indirect analysis of the effect of surface treatment. Journal of Materials Science, 34(9), 2121-2133. http://dx.doi.org/10.1023/A:1004572112470.

4. Etcheverry, M., & Barbosa, S. E. (2012). Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials, 5(6), 1084-1113. PMid:28817025. http://dx.doi.org/10.3390/ma5061084.

5. Ma, P. C., Liu, J. W., Gao, S. L., & Mäder, E. (2013). Development of functional glass fibres with nanocomposite coating: a comparative study. Composites. Part A, Applied Science and Manufacturing, 44(1), 16-22. http://dx.doi.org/10.1016/j.compositesa.2012.08.027.

6. Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., & Ge, H. (2014). Modifying glass fibres with graphene oxide: Towards high-performance polymer composites. Composites Science and Technology, 97, 41-45. http://dx.doi.org/10.1016/j.compscitech.2014.03.023.

7. Russo, P., Acierno, D., Simeoli, G., Iannace, S., & Sorrentino, L. (2013). Flexural and impact response of woven glass fiber fabric/polypropylene composites. Composites. Part B, Engineering, 54(1), 415-421. http://dx.doi.org/10.1016/j.compositesb.2013.06.016.

8. Siddiqui, N. A., Li, E. L., Sham, M. L., Tang, B. Z., Gao, S. L., Mäder, E., & Kim, J. K. (2010). Tensile strength of glass fibres with carbon nanotube-epoxy nanocomposite coating: Effects of CNT morphology and dispersion state. Composites. Part A, Applied Science and Manufacturing, 41(4), 539-548. http://dx.doi.org/10.1016/j.compositesa.2009.12.011.

9. Decher, G., Lvov, Y., & Schmitt, J. (1994). Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films. Thin Solid Films, 244(1-2), 772-777. http://dx.doi.org/10.1016/0040-6090(94)90569-X.

10. Yang, Y. H., Malek, F. A., & Grunlan, J. C. (2010). Influence of deposition time on layer-by-layer growth of clay-based thin films. Industrial & Engineering Chemistry Research, 49(18), 8501-8509. http://dx.doi.org/10.1021/ie100499x.

11. Srivastava, S., & Kotov, N. A. (2008). Composite Layer-by-Layer (LBL) assembly with inorganic nanoparticles and nanowires. Accounts of Chemical Research, 41(12), 1831-1841. PMid:19053241. http://dx.doi.org/10.1021/ar8001377.

12. Ribeiro, B., Botelho, E. C., & Costa, M. L. (2015). Estudo das propriedades elétricas e térmicas de compósitos nanoestruturados de poli(sulfeto de fenileno) reforçados com nanotubos de carbono. Polímeros: Ciência e Tecnologia, 25(1), 94-100. http://dx.doi.org/10.1590/0104-1428.1728.

13. Lopes, M. C., Trigueiro, J. P. C., Castro, V. G., Lavall, R. L., & Silva, G. G. (2016). Otimização do processo de dispersão de nanotubos de carbono em poliuretano termorrígido. Polímeros: Ciência e Tecnologia, 26(1), 81-91. http://dx.doi.org/10.1590/0104-1428.2087.

14. Loh, K. J., Kim, J., Lynch, J. P., Kam, N. W. S., & Kotov, N. A. (2007). Multifunctional Layer-by-Layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing. Smart Materials and Structures, 16(2), 429-438. http://dx.doi.org/10.1088/0964-1726/16/2/022.

15. Mansur, A. A. P., Nascimento, O. L., Vasconcelos, W. L., & Mansur, H. S. (2008). Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications. Materials Research, 11(3), 293-302. http://dx.doi.org/10.1590/S1516-14392008000300011.

16. Ning, N., Zhang, W., Yan, J., Xu, F., Wang, T., Su, H., Tang, C., & Fu, Q. (2013). Largely enhanced crystallization of semi-crystalline polymer on the surfasse of glass fiber by using graphene oxide as a modifier. Polymer, 54(1), 303-309. http://dx.doi.org/10.1016/j.polymer.2012.11.045.

17. Bao, H., Chen, Q., Zhang, L., & Chen, G. (2011). Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Analyst, 136(24), 5190-5196. PMid:22013584. http://dx.doi.org/10.1039/c1an15690j.

18. Crisp, M. T., & Kotov, N. A. (2003). Preparation of nanoparticle coatings on surfaces of complex geometry. Nano Letters, 3(2), 173-177. http://dx.doi.org/10.1021/nl025896f.

19. Xin, X., Xu, G., & Li, H. (2013). Dispersion and property manipulation of carbon nanotubes by self-assemblies of amphiphilic molecules. In S. Suzuki (Ed.), Physical and chemical properties of carbon nanotubes (pp. 255-273). Rijeka: InTech.

20. Di Crescenzo, A., Ettorre, V., & Fontana, A. (2014). Non-covalent and reversible functionalization of carbon nanotubes. Beilstein Journal of Nanotechnology, 5, 1675-1690. PMid:25383279. http://dx.doi.org/10.3762/bjnano.5.178.

21. Theodore, M., Hosur, M., Thomas, J., & Jeelani, S. (2011). Influence of functionalization on properties of MWCNT-epoxy nanocomposites. Materials Science and Engineering A, 528(3), 1192-1200. http://dx.doi.org/10.1016/j.msea.2010.09.095.

22. Villetti, M. A., Crespo, J. S., Soldi, M. S., Pires, A. N., Borsali, R., & Soldi, V. (2002). Thermal degradation of natural polymers. Journal of Thermal Analysis and Calorimetry, 67(2), 295-303. http://dx.doi.org/10.1023/A:1013902510952.

23. Gao, S. L., Mäder, E., & Plonka, R. (2008). Nanocomposite coatings for healing surface defects of glass fibres and improving interfacial adhesion. Composites Science and Technology, 68(14), 2892-2901. http://dx.doi.org/10.1016/j.compscitech.2007.10.009.

24. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., & Yodh, A. G. (2003). High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters, 3(2), 269-273. http://dx.doi.org/10.1021/nl025924u.

25. Liu, X. Q., & Picart, C. (2016). Layer-by-Layer assemblies for cancer treatment and diagnosis. Advanced Materials, 28(6), 1295-1301. PMid:26390356. http://dx.doi.org/10.1002/adma.201502660.

26. Huang, X., & Zacharia, N. S. (2015). Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. Journal of Applied Polymer Science, 132(45), 42767. http://dx.doi.org/10.1002/app.42767.

5b7c1fba0e8825ba2d896e5a polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections