Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.14916
Polímeros: Ciência e Tecnologia
Original Article

Influence of tribological test on the global conversion of natural composites

Correa, Carlos Eduardo; Zuluaga, Robin; Castro, Cristina; Betancourt, Santiago; Vázquez, Analía; Gañán, Piedad

Downloads: 0
Views: 61

Abstract

The vinyl ester resins and natural composites have emerged as a suitable alternative in tribological application due to mechanical behavior, which relates to the conversion of the double bonds. During tribological test the permanent contact between polymeric sample and counterpart can increase the temperature affecting the crosslinking of the samples. These variations have direct implications in the curing rate and the global conversion. In this work, the FTIR evaluation is used to evaluate possible changes on the global conversion of vinyl ester and their composites reinforced with Musaceae fiber bundles and cured using two hardeners, after a specific tribological test. Increments around 15% on global conversion of styrene double bonds were observed for neat matrix and composites using both hardeners, suggesting that during tribology test some alterations on resin structure takes place. These results open alternatives to manipulate the curing conditions in order to control the tribological behavior.

Keywords

FTIR analysis, global conversion, natural fiber composites, tribology test, vinyl ester matrix.

References

1. Siva, P., Varma, I. K., Patel, D. M., & Sinha, T. J. M. (1994). Effect of structure on properties of vinyl ester resins. Bulletin of Materials Science, 17(6), 1095-1101. http://dx.doi.org/10.1007/BF02757587.

2. Nawab, Y., Casari, P., Boyard, N., & Jacquemin, F. (2013). Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment. Journal of Materials Science, 48(6), 2394-2403. http://dx.doi.org/10.1007/s10853-012-7026-6.

3. Li, L., & Lee, L. J. (2001). Effects of inhibitors and retarders on low temperature free radical crosslinking polymerization between styrene and vinyl ester resin. Polymer Engineering and Science, 41(1), 53-65. http://dx.doi.org/10.1002/pen.10708.

4. Mouritz, A. P., Feih, S., Mathys, Z., & Gibson, A. G. (2011). Mechanical property degradation of naval composite materials. Fire Technology, 47(4), 913-939. http://dx.doi.org/10.1007/s10694-009-0125-5.

5. Ziaee, S., & Palmese, G. (1999). Effects of temperature on cure kinetics and mechanical properties of vinyl–ester resins. Journal of Polymer Science. Part B, Polymer Physics, 37(7), 725-744. http://dx.doi.org/10.1002/(SICI)1099-0488(19990401)37:7<725::AID-POLB23>3.0.CO;2-E.

6. Cook, W. D., Simon, G. P., Burchill, P. J., Lau, M. T., & Fitch, J. (1997). Curing kinetics and thermal properties of vinyl ester resins. Journal of Applied Polymer Science, 64(4), 769-781. http://dx.doi.org/10.1002/(SICI)1097-4628(19970425)64:4<769::AID-APP16>3.0.CO;2-P.

7. Mao, Q., Bian, L., & Huang, M. (2011). Study of the visible light curing of vinyl ester resins using in situ raman spectroscopy. Journal of Polymer Research, 18(6), 1751-1756. http://dx.doi.org/10.1007/s10965-011-9581-y.

8. Kandelbauer, A., Tondi, G., Zaske, O. C., & Goodman, S. H. (1999). Unsaturated polyesters and vinyl esters. In D. Hanna, & S. H. Goodma (Eds.), Handbook of thermoset plastics (3rd ed., pp. 111-172). San Diego: Elsevier.

9. Sultania, M., Rai, J. S. P., & Srivastava, D. (2010). Studies on the synthesis and curing of epoxidized novolac vinyl ester resin from renewable resource material. European Polymer Journal, 46(10), 2019-2032. http://dx.doi.org/10.1016/j.eurpolymj.2010.07.014.

10. Nazareth da Silva, A. L., Teixeira, S. C. S., Widal, A. C. C., & Coutinho, F. M. B. (2001). Mechanical properties of polymer composites based on commercial epoxy vinyl ester resin and glass fiber. Polymer Testing, 20(8), 895-899. http://dx.doi.org/10.1016/S0142-9418(01)00018-6.

11. Ku, H., Prajapati, M., & Cardona, F. (2011). Thermal properties of sawdust reinforced vinyl ester composites post-cured in microwaves: A pilot study. Composites. Part B, Engineering, 42(4), 898-906. http://dx.doi.org/10.1016/j.compositesb.2011.01.008.

12. Scott, T. F., Cook, W. D., & Forsythe, J. S. (2002). Kinetics and network structure of thermally cured vinyl ester resins. European Polymer Journal, 38(4), 705-716. http://dx.doi.org/10.1016/S0014-3057(01)00244-0.

13. Brill, R. P., & Palmese, G. R. (2000). An investigation of vinyl – ester -styrene bulk copolymerization cure kinetics. using fourier transform infrared Spectroscopy. Journal of Applied Polymer Science, 76(10), 1572-1582. http://dx.doi.org/10.1002/(SICI)1097-4628(20000606)76:10<1572::AID-APP12>3.0.CO;2-C.

14. Launikitis, M. B. (1982). Vinyl ester resins. In G. Lubin (Eds.), Handbook of composites (pp. 38-49). New York: Van Nostrand Reinhold Company Inc.

15. Gaur, B., & Rai, J. S. P. (1992). Curing and decomposition behaviour of vinyl ester resins. Polymer Report, 33(1), 4210-4214. http://dx.doi.org/10.1016/0032-3861(92)90631-6.

16. Han, C. D., & Lem, K. W. (1984). Chemorheology of thermosetting resins. IV. The chemorheology and curing kinetics of vinyl ester resin. Journal of Applied Polymer Science, 29(5), 1879-1902. http://dx.doi.org/10.1002/app.1984.070290538.

17. Ittner Mazali, C. A., & Felisberti, M. I. (2009). Vinyl ester resin modified with silicone-based additives: III. Curing kinetics. European Polymer Journal, 45(8), 2222-2233. http://dx.doi.org/10.1016/j.eurpolymj.2009.05.022.

18. Rao, B. S., Madec, P. J., & Marechal, E. (1986). Synthesis of vinyl ester resins. Evidence of secondary reactions by 13C NMR. Polymer Bulletin, 16(2-3), 153-157. http://dx.doi.org/10.1007/BF00955485.

19. Bhatnagar, R., & Varma, I. K. (1989). Effect of 0t-methylstryrene of the curing behaviour of vinyl ester resins. Journal of Thermal Analysis and Calorimetry, 35(4), 1241-1249. http://dx.doi.org/10.1007/BF01913044.

20. Choudhary, M. S., & Varma, I. K. (1993). Vinyl ester resins, 3a. Effect of ethyl methacrylate on thermal and mechanical properties. Die Angewandte Makromolekulare Chemie, 209(1), 33-39. http://dx.doi.org/10.1002/apmc.1993.052090104.

21. Penczek, P., Czub, P., & Pielichowski, J. (2005). Unsaturated polyester resins: chemistry and technology. In A. Abe, K. Dusᵛek, & S. Kobayashi (Eds.), Crosslinking in materials science (pp. 1-95). Berlin: Springer Berlin Heidelberg.

22. Li, P., Yang, X., Yu, Y., & Yu, D. (2004). Cure kinetics, microheterogeneity, and mechanical properties of the high temperature cure of vinyl ester resins. Journal of Applied Polymer Science, 92(2), 1124-1133. http://dx.doi.org/10.1002/app.13686.

23. Chauhan, S. R., Kumar, A., & Singh, I. (2010). Sliding friction and wear behaviour of vinylester and its composites under dry and water lubricated sliding conditions. Materials & Design, 31(6), 2745-2751. http://dx.doi.org/10.1016/j.matdes.2010.01.020.

24. Suresha, B., Shiva Kumar, K., Seetharamu, S., & Sampath Kumaran, P. (2010). Friction and dry slidinin wear behavior of carbon and glass fabric reinforced vinyl ester composites. Tribology International, 43(3), 602-609. http://dx.doi.org/10.1016/j.triboint.2009.09.009.

25. Correa, C. E., Betancourt, S., Vázquez, A., & Gañan, P. (2017). Wear performance of vinyl ester reinforced with Musaceae fiber bundles sliging against differente metallic surfaces. Tribology International, 109(1), 447-459. http://dx.doi.org/10.1016/j.triboint.2017.01.009.

26. Manickam, C., Hariharan, K., Athijayamani, A. Experimental investigación of tribological behavior of hybrid and particulate reinforced vinyl ester composite. International Journal of Applied Engineering Research, 10(13), 11001-11004.

27. Rodriguez, E., Larrañaga, M., Mondragón, I., & Vázquez, A. (2006). Relationship between the network morphology and properties of commercial vinyl ester resins. Journal of Applied Polymer Science, 100(5), 3895-3903. http://dx.doi.org/10.1002/app.22732.

28. Pritchard, G. (1998). Plastics additives. Netherlands: Springer.

29. Cvetanovska, A., & Compston, P. (2004). Degree of cure and tensile properties of vinylester resin cured with ultraviolet light. Journal of Materials Science, 39(5), 1791-1793. http://dx.doi.org/10.1023/B:JMSC.0000016186.59458.a1.

30. Xiancong, H., Meiwu, S., Guotai, Z., Hong, Z., Xiaopeng, H., & Chunlan, Z. (2008). Investigation on the electron-beam curing of vinylester resin. Radiation Physics and Chemistry, 77(5), 643-655. http://dx.doi.org/10.1016/j.radphyschem.2007.11.006.

31. Dirand, X., Hilaire, B., Lafontaine, E., Mortaigne, B., & Nardin, M. (1994). Crosslinking of vinyl ester matrix in contact with different surfaces. Composites, 25(7), 645-652. http://dx.doi.org/10.1016/0010-4361(94)90197-X.

32. Yang, H., & Lee, L. J. (2001). A kinetic model for free-radical crosslinking co-polymerization of styrene/vinylester resin. Polymer Composites, 22(5), 668-679. http://dx.doi.org/10.1002/pc.10569.

33. Scott, T. F., Cook, W. D., & Forsythe, J. S. (2002). Photo-DSC cure kinetics of vinyl ester resins. I. Influence of temperature. Polymer, 43(22), 5839-5845. http://dx.doi.org/10.1016/S0032-3861(02)00490-1.

34. Zaske, O. C., & Goodman, S. H. (1998). Unsaturated polyester and vinyl ester resins. In S. H. Goodman (Eds.), Handbook of thermoset plastics (2nd ed., pp. 97-162). Westwood: Noyes Publications.

35. Correa, C. E., Betancourt, S., Vázquez, A., & Gañan, P. (2015). Wear resistance and friction behavior of thermoset matrix reinforced with Musaceae fiber bundles. Tribology International, 87(1), 57-64. http://dx.doi.org/10.1016/j.triboint.2015.02.015.

36. Sultania, M., Yadaw, S. B., Rai, J. S. P., & Srivastava, D. (2010). Laminates based on vinyl ester resin and glass fabric: A study on the thermal, mechanical and morphological characteristics. Materials Science and Engineering A, 527(18-19), 4560-4570. http://dx.doi.org/10.1016/j.msea.2010.04.038.

37. Auad, M. L., Aranguren, M., & Borrajo, J. (1997). Epoxy-based divinyl ester resin/styrene copolymers: Composition dependence of the mechanical and thermal properties. Journal of Applied Polymer Science, 66(6), 1059-1066. http://dx.doi.org/10.1002/(SICI)1097-4628(19971107)66:6<1059::AID-APP6>3.0.CO;2-H.

38. Masson, J. F., Pelletier, L., & Collins, P. (2001). Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. Journal of Applied Polymer Science, 79(6), 1034-1041. http://dx.doi.org/10.1002/1097-4628(20010207)79:6<1034::AID-APP60>3.0.CO;2-4.

39. Kuo, P. Y., Yan, N., & Sain, M. (2013). Influence of cellulose nanofibers on the curing behavior of epoxy/amine systems. European Polymer Journal, 49(12), 3778-3787. http://dx.doi.org/10.1016/j.eurpolymj.2013.08.022.

40. Pistor, V., Soares, S. S. D. S. D. S., Ornaghi, H. L., Jr., Fiorio, R., & Zattera, A. J. (2012). Influence of glass and sisal fibers on the cure kinetics of unsaturated polyester resin. Materials Research, 15(4), 650-656. http://dx.doi.org/10.1590/S1516-14392012005000064.

41. Omrani, A., Simon, L. C., & Rostami, A. A. (2009). The effects of alumina nanoparticle on the properties of an epoxy resin sysem. Materials Chemistry and Physics, 114(1), 145-150. http://dx.doi.org/10.1016/j.matchemphys.2008.08.090.

42. Ehsani, M., Khonakdar, H. A., & Ghadami, A. (2013). Assesment of morphological, thermal, and viscoelastic properties of epoxy vinyl ester coating composites. Role of glass flake and mixing method. Progress in Organic Coatings, 76(1), 238-243. http://dx.doi.org/10.1016/j.porgcoat.2012.09.010.

43. Dua, S., Mccullough, R. L., & Palmese, G. R. (1999). Copolymerization kinetics of styrene/vinyl-ester systems: Low temperature reactions. Polymer Composites, 20(3), 379-391. http://dx.doi.org/10.1002/pc.10364.

44. Kandelbauer, A., Tondi, G., Zaske, O., & Goodman, S. H. (2014). Unsaturated polyesters and vinyl esters. In S. H. Goodman, & H. Dodiuk-Kenig (Eds.), Handbook of thermoset plastics (3rd ed., pp. 111-172). San Diego: Elsevier.

5b7c1eb50e8825b428896e60 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections