Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.11316
Polímeros: Ciência e Tecnologia
Original Article

Ultrasound-assisted synthesis of polyacrylamide-grafted sodium alginate and its application in dye removal

José Manoel Couto da Feira; Jalma Maria Klein; Maria Madalena de Camargo Forte

Downloads: 0
Views: 28

Abstract

Abstract: A polymeric adsorbent based on sodium alginate (SAG) grafted with polyacrylamide (PAM) (SAG- g-PAM) was synthesized using an ultrasound-assisted method. The addition polymerization was carried out with ammonium persulfate as the initiator, at different acrylamide (AM) concentrations. The SAG-g-PAM copolymers were evaluated by FTIR and 13C NMR spectroscopies, thermogravimetric analysis, grafting efficiency (%GE) and intrinsic viscosity in NaCl solution at 25 °C. Graft copolymers could be obtained in reaction lasting until 10 min by using ultrasound energy with grafting efficiency above 75%. The decolorization efficiency and adsorption capacity of the SAG- g-PAM copolymers were investigated in the adsorption of methylene blue (MB). The dye adsorption was pH dependent, and adsorption capacity (69.13 mg/g) maxima was at pH 10. All the graft copolymers have shown the same decolorization efficiency (99%), and the best one for MB removing is the SAG-g-PAM6 (%GE = 75%), since lower acrylamide content is required in the synthesis.

Keywords

graft copolymer, alginate, acrylamide, ultrasound, adsorbents, methylene blue

References

1 Yang, J. S., Xie, Y. J., & He, W. (2011). Research progress on chemical modification of alginate – a review. Carbohydrate Polymers, 84(1), 33-39. http://dx.doi.org/10.1016/j.carbpol.2010.11.048.

2 Mittal, H., Ray, S. S., & Okamoto, M. (2016). Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification – review. Macromolecular Materials and Engineering, 301(5), 496-522. http://dx.doi.org/10.1002/mame.201500399.

3 Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization - a review of chemistry, properties and applications. Biomaterials, 33(11), 3279-3305. PMid:22281421. http://dx.doi.org/10.1016/j.biomaterials.2012.01.007.

4 Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J., & Suo, Z. (2012). Highly Stretchable and tough hydrogels. Nature , 489(7414), 133-136. PMid:22955625. http://dx.doi.org/10.1038/nature11409.

5 Gupta, S., Sharma, P., & Soni, P. L. (2004). Carboxymethylation of Cassia occidentalis seed gum. Journal of Applied Polymer Science, 94(4), 1606-1611. http://dx.doi.org/10.1002/app.20958.

6 Marques, N. N., Maia, A. M. S., & Balaban, R. C. (2015). Development of dual-sensitive smart polymers by grafting chitosan with poly (N – isopropylacrylamyde): na overview. Polímeros: Ciência e Tecnologia, 25(3), 237-246.

7 Sand, A., Yadav, M., Mishra, D. K., & Behari, K. (2010). Modification of alginate by grafting of N-vinyl-2-pyrrolidone and studies of physicochemical properties in terms of swelling capacity, metal-ion uptake and flocculation. Carbohydrate Polymers , 80(4), 1147-1154. http://dx.doi.org/10.1016/j.carbpol.2010.01.036.

8 Crescenzi, V., Dentini, M., Risica, D., Spadoni, S., Skjak-Braek, G., Capitani, D., Mannina, L., & Viel, S. (2004). C(6)-oxidation followed by C(5)-epimerization of guar gum studied by high field NMR. Biomacromolecules, 5(2), 537-546. PMid:15003018. http://dx.doi.org/10.1021/bm034387k.

9 Galanos, C., Luderitz, O., & Himmelspach, K. (1969). The partial acid hydrolysis of polysaccharides: A new method for obtaining oligosaccharides in high yield. European Journal of Biochemistry , 8(3), 332-336. PMid:5802875. http://dx.doi.org/10.1111/j.1432-1033.1969.tb00532.x.

10 Matricardi, P., Meo, C. D., Coviello, T., Henink, W. E., & Alhaique, F. (2013). Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Advanced Drug Delivery Reviews, 65(9), 1172-1187. PMid:23603210. http://dx.doi.org/10.1016/j.addr.2013.04.002.

11 Thakur, V. K., Thakur, M. N., & Gupta, R. K. (2013). Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydrate Polymers, 98(1), 820-828. PMid:23987417. http://dx.doi.org/10.1016/j.carbpol.2013.06.072.

12 Al-Kahtani, A. A., & Sherigara, B. S. (2014). Semi-interpenetrating network of acrylamide-grafted-sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization. Colloids and Surfaces. B, Biointerfaces, 115, 132-138. PMid:24333910. http://dx.doi.org/10.1016/j.colsurfb.2013.11.040.

13 Tripathi, R., & Mishra, B. (2012). Development and evaluation of sodium alginate-polyacrylamide graft-co-polymer based stomach targeted hydrogels of famotidine. American Association of Pharmaceutical Scientists, 13(4), 1091-1102. PMid:22936406.

14 Tripathy, T., Pandey, S. R., Karmakar, N. C., Bhagat, R. P., & Singh, R. P. (1999). Novel flocculating agent based on sodium alginate and acrylamide. European Polymer Journal , 35(11), 2057-2072. http://dx.doi.org/10.1016/S0014-3057(98)00284-5.

15 Tripathy, T., & Singh, R. P. (2000). High performance flocculating agent based on partially hydrolysed sodium alginate-g-polyacrylamide. European Polymer Journal , 36(7), 1471-1476. http://dx.doi.org/10.1016/S0014-3057(99)00201-3.

16 Xu, K., Xu, X., Ding, Z., & Zhou, M. (2006). Synthesis and flocculability of sodium alginate grafted with acrylamide. China Particuology, 4(2), 60-64. http://dx.doi.org/10.1016/S1672-2515(07)60235-8.

17 Gad, Y. H., Aly, R. O., & Abdel-Aal, S. E. (2011). Synthesis and characterization of Na-Alginate/Acrylamide hydrogel and its application in dye removal. Journal of Applied Polymer Science , 120(4), 1899-1906. http://dx.doi.org/10.1002/app.33269.

18 Klein, J. M., Lima, V. S., Feira, J. M. C., Brandalise, R. N., & Forte, M. M. C. (2016). Chemical modification of cashew gum with acrylamide using an ultrasound-assisted method. Journal of Applied Polymer Science, 133(31), 43634. http://dx.doi.org/10.1002/app.43634.

19 Hu, A., Jiao, S., Zheng, J., Li, L., Fan, Y., Chen, L., & Zhang, Z. (2015). Ultrasonic frequency effect on corn starch and its cavitation. Lebensmittel-Wissenschaft + Technologie , 60(2), 941-947. http://dx.doi.org/10.1016/j.lwt.2014.10.048.

20 Bashari, M., Abbas, S., Xu, X., & Jin, Z. (2014). Combined of ultrasound irradiation with high hydrostatic pressure (US/HHP) as a new method to improve immobilization of dextranase onto alginate gel. Ultrasonics Sonochemistry, 21(4), 1325-1334. PMid:24582659. http://dx.doi.org/10.1016/j.ultsonch.2014.02.004.

21 Erriu, M., Blus, C., Szmukler-Moncler, S., Buogo, S., Levi, R., Barbato, G., Madonnaripa, D., Denotti, G., Piras, V., & Orrù, G. (2014). Microbial biofilm modulation by ultrasound: current concepts and Controversies. Ultrasonics Sonochemistry , 21(1), 15-22. PMid:23751458. http://dx.doi.org/10.1016/j.ultsonch.2013.05.011.

22 Gao, W., Lin, X., Lin, X., Ding, J., Huang, X., & Wu, H. (2011). Preparation of nano-sized flake carboxymethyl cassava starch under ultrasonic irradiation. Carbohydrate Polymers, 84(4), 1413-1418. http://dx.doi.org/10.1016/j.carbpol.2011.01.056.

23 Yin, N., & Chen, K. (2004). Ultrasonically initiated emulsifier-free emulsion copolymerization of n-butyl acrylate and acrylamide. Part I: Polymerization mechanism. Polymer , 45(11), 3587-3594. http://dx.doi.org/10.1016/j.polymer.2004.03.087.

24 Suslick, K. S. (1990). Sonochemistry. Science, 247(4949), 1439-1445. PMid:17791211. http://dx.doi.org/10.1126/science.247.4949.1439.

25 Camino, N. A., Pérez, O. E., & Pilosof, A. M. R. (2009). Molecular and functional modification of hydroxypropylmethylcellulose by high-intensity ultrasound. Food Hydrocolloids, 23(4), 1089-1095. http://dx.doi.org/10.1016/j.foodhyd.2008.08.015.

26 Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management , 83(2), 171-180. PMid:16701938. http://dx.doi.org/10.1016/j.jenvman.2006.02.012.

27 Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilized dead C. tropicalis. Desalination , 285, 22-30. http://dx.doi.org/10.1016/j.desal.2011.09.023.

28 Kiran, I., Akar, T., Ozcan, A. S., Ozcan, A., & Tunali, S. (2006). Biosorption kinetics and isotherm studies of Acid Red 57 by dried Cephalosporium aphidicola cells from aqueous solutions. Biochemical Engineering Journal, 31(3), 197-203. http://dx.doi.org/10.1016/j.bej.2006.07.008.

29 Alzaydien, A. S. (2009). Adsorption of methylene blue from aqueous solution onto a low cost natural Jordanian Tripoli. American Journal of Environmental Sciences , 5(3), 197-208. http://dx.doi.org/10.3844/ajessp.2009.197.208.

30 Tan, I. A. W., Hameed, B. H., & Ahmed, A. L. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chemical Engineering Journal, 137(3), 462-470. http://dx.doi.org/10.1016/j.cej.2007.04.031.

31 Robinson, T., Mcmullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3), 247-255. PMid:11272011. http://dx.doi.org/10.1016/S0960-8524(00)00080-8.

32 Ncibi, M. C., Mahjoub, B., & Seffen, M. (2007). Kinetic and equilibrium studies of methylene blue Biosorption by Posidonia oceanic (L) fibres. Journal of Hazardous Materials , 139(2), 280-285. PMid:16860936. http://dx.doi.org/10.1016/j.jhazmat.2006.06.029.

33 Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials , 177(1-3), 70-80. PMid:20044207. http://dx.doi.org/10.1016/j.jhazmat.2009.12.047.

34 Azargohar, R., & Dalai, A. K. (2005). Production of activated carbon from Luscar char: experimental and modeling studies. Microporous and Mesoporous Materials , 85(3), 219-225. http://dx.doi.org/10.1016/j.micromeso.2005.06.018.

35 Margulis, M. A., & Margulis, I. M. (2003). Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid. Ultrasonics Sonochemistry, 10(6), 343-345. PMid:12927610. http://dx.doi.org/10.1016/S1350-4177(03)00100-7.

36 Fanta, G. F. (1973). Synthesis of graft and block copolymers of starch. In R. J. Ceresa (Ed.), Block and graft copolymerization (pp. 1-24). London: John Wiley & Sons Ltd.

37 Sen, G., & Pal, S. (2009). Polyacrylamide grafted carboxymethyl tamarind (CMT-g-PAM): Development and application of a novel polymeric flocculant. Macromolecular Symposia , 277(1), 100-111. http://dx.doi.org/10.1002/masy.200950313.

38 Pandey, S., & Mishra, S. B. (2011). Graft copolymerization of ethylacrylate onto xanthan gum, using potassium peroxydisulfate as an initiator. International Journal of Biological Macromolecules, 49(4), 527-535. PMid:21693131. http://dx.doi.org/10.1016/j.ijbiomac.2011.06.005.

39 Wang, W., & Wang, A. (2010). Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly(sodium acrylate) and polyvinylpyrrolidone. Carbohydrate Polymers, 80(4), 1028-1036. http://dx.doi.org/10.1016/j.carbpol.2010.01.020.

40 Tripathy, T., & Singh, R. P. (2001). Characterization of Polyacrylamide-Grafted Sodium Alginate: A Novel Polymeric Flocculant. Journal of Applied Polymer Science , 81(13), 3296-3308. http://dx.doi.org/10.1002/app.1786.

41 Wang, J. P., Chen, Y. Z., Ge, X. W., & Yu, H. Q. (2007). Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere, 66(9), 1752-1757. PMid:16904161. http://dx.doi.org/10.1016/j.chemosphere.2006.06.072.

42 Iida, Y., Tuziuti, T., Yasui, K., Towata, A., & Kozuka, T. (2008). Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science & Emerging Technologies, 9(2), 140-146. http://dx.doi.org/10.1016/j.ifset.2007.03.029.

43 Hosseini, S. M. H., Emam-Djomeh, Z., Razavi, S. H., Moosavi-Movahedi, A. A., Saboury, A. A., Atri, M. S., & der Meeren, P. V. (2013). β-Lactoglobulin-sodium alginate interaction as affected by polysaccharide depolymerization using high intensity ultrasound. Food Hydrocolloids, 32(2), 235-244. http://dx.doi.org/10.1016/j.foodhyd.2013.01.002.

44 Patel, G. M., Patel, C. P., & Trivedi, H. C. (1999). Ceric-induced grafting of methyl acrylate onto sodium salt of partially carboxymethylated sodium alginate. European Polymer Journal, 35(2), 201-208. http://dx.doi.org/10.1016/S0014-3057(98)00123-2.

45 Sen, G., Singh, R. P., & Pal, S. (2010). Microwave-initiated synthesis of polyacrylamide grafted sodium alginate: Synthesis and Characterization. Journal of Applied Polymer Science, 115(1), 63-71. http://dx.doi.org/10.1002/app.30596.

46 Rani, P., Mishra, S., & Sen, G. (2013). Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: its application as flocculant. Carbohydrate Polymers , 91(2), 686-692. PMid:23121965. http://dx.doi.org/10.1016/j.carbpol.2012.08.023.

47 Vandyke, J. D., & Kasperski, K. L. (1993). Thermogravimetric study of polyacrylamide with evolved gas analysis. Journal of Polymer Science. Part A, Polymer Chemistry , 31(7), 1807-1823. http://dx.doi.org/10.1002/pola.1993.080310720.

48 Pourjavadi, A., Jahromi, P. E., Seidi, F., & Salimi, H. (2010). Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels. Carbohydrate Polymers, 79(4), 933-940. http://dx.doi.org/10.1016/j.carbpol.2009.10.021.

49 Pal, S., Ghorai, S., Dash, M. K., Ghosh, S., & Udayabhanu, G. (2011). Flocculation properties of polyacrylamide grafted carboxymethyl guar gum (CMG-g-PAM) synthesized by conventional and microwave assisted method. Journal of Hazardous Materials, 192(3), 1580-1588. PMid:21802849. http://dx.doi.org/10.1016/j.jhazmat.2011.06.083.

50 Sánchez-Martín, J., González-Velasco, M., Beltrán-Heredia, J., Gragera-Carvajal, J., & Salguero-Fernández, J. (2010). Novel tannin-based adsorbent in removing cationic dye (Methylene Blue) from aqueous solution. Kinetics and equilibrium studies. Journal of Hazardous Materials, 174(1-3), 9-16. PMid:19782466. http://dx.doi.org/10.1016/j.jhazmat.2009.09.008.
 

5b7c5f220e88250a1a896e51 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections