Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.09816
Polímeros: Ciência e Tecnologia
Original Article

Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

Felipe Nunes Linhares; Cléverson Fernandes Senra Gabriel; Ana Maria Furtado de Sousa; Marcia Christina Amorim Moreira Leite; Cristina Russi Guimarães Furtado

Downloads: 0
Views: 66

Abstract

Abstract: Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR) is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR) with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%). NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

Keywords

nitrile rubber, crosslink density, biodiesel, mechanical properties

References

Zhao, J., Yang, R., Iervolino, R., & Barbera, S. (2013). Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chemistry and Technology, 86(4), 591-603. http://dx.doi.org/10.5254/RCT.13.87969.

Xiong, Y., Chen, G., Guo, S., & Li, G. (2013). Lifetime prediction of NBR composite sheet in aviation kerosene by using nonlinear curve fitting of ATR-FTIR spectra. Journal of Industrial and Engineering Chemistry, 19(5), 1611-1616. http://dx.doi.org/10.1016/j.jiec.2013.01.031.

Datta, R. N., Huntink, N. M., Datta, S., & Talma, A. G. (2007). Rubber vulcanizates degradation and stabilization. Rubber Chemistry and Technology, 80(3), 436-480. http://dx.doi.org/10.5254/1.3548174.

Akhlaghi, S., Hedenqvist, M. S., Conde Braña, M. T., Bellander, M., & Gedde, U. W. (2015). Deterioration of acrylonitrile butadiene rubber in rapeseed biodiesel. Polymer Degradation & Stability, 111(1), 211-222. http://dx.doi.org/10.1016/j.polymdegradstab.2014.11.012.

Mostafa, A., Abouel-Kasem, A., Bayoumi, M. R., & El-Sebaie, M. G. (2009). The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Materials & Design, 30(3), 791-795. http://dx.doi.org/10.1016/j.matdes.2008.05.065.

Trakarnpruk, W., & Porntangjitlikit, S. (2008). Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties. Renewable Energy, 33(7), 1558-1563. http://dx.doi.org/10.1016/j.renene.2007.08.003.

Haseeb, A. S. M. A., Masjuki, H. H., Siang, C. T., & Fazal, M. A. (2010). Compatibility of elastomers in palm biodiesel. Renewable Energy, 35(10), 2356-2361. http://dx.doi.org/10.1016/j.renene.2010.03.011.

Haseeb, A. S. M. A., Jun, T. S., Fazal, M. A., & Masjuki, H. H. (2011). Degradation of physical properties of different elastomers upon exposure to palm biodiesel. Energy , 36(3), 1814-1819. http://dx.doi.org/10.1016/j.energy.2010.12.023.

Chai, A. B., Andriyana, A., Verron, E., & Johan, M. R. (2013). Mechanical characteristics of swollen elastomers under cyclic loading. Materials & Design, 44(x), 566-572. http://dx.doi.org/10.1016/j.matdes.2012.08.027.

Linhares, F. N., Corrêa, H. L., Khalil, C. N., Leite, M. C. A. M., & Furtado, C. R. G. (2013). Study of the compatibility of nitrile rubber with Brazilian biodiesel. Energy, 49(1), 102-106. http://dx.doi.org/10.1016/j.energy.2012.10.040.

Chai, A. B., Andriyana, A., Verron, E., Johan, M. R., & Haseeb, A. S. M. A. (2011). Development of a compression test device for investigating interaction between diffusion of biodiesel and large deformation in rubber. Polymer Testing, 30(8), 867-875. http://dx.doi.org/10.1016/j.polymertesting.2011.08.009.

Andriyana, A., Chai, A. B., Verron, E., & Johan, M. R. (2012). Interaction between diffusion of palm biodiesel and large strain in rubber: effect on stress-softening during cyclic loading. Mechanics Research Communications, 43, 80-86. http://dx.doi.org/10.1016/j.mechrescom.2012.03.004.

Dubovský, M., Božek, M., & Olšovský, M. (2015). Degradation of aviation sealing materials in rapeseed biodiesel. Journal of Applied Polymer Science, 132(28), 42254. http://dx.doi.org/10.1002/app.42254.

Akhlaghi, S., Pourrahimi, A. M., Hedenqvist, M. S., Sjöstedt, C., Bellander, M., & Gedde, U. W. (2016). Degradation of carbon-black-filled acrylonitrile butadiene rubber in alternative fuels: Transesterified and hydrotreated vegetable oils. Polymer Degradation & Stability, 123, 69-79. http://dx.doi.org/10.1016/j.polymdegradstab.2015.11.019.

Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2015). Compatibility of different biodiesel composition with acrylonitrile butadiene rubber (NBR). Fuel, 158, 288-292. http://dx.doi.org/10.1016/j.fuel.2015.05.054.

Coronado, M., Montero, G., Valdez, B., Stoytcheva, M., Eliezer, A., García, C., Campbell, H., & Pérez, A. (2014). Degradation of nitrile rubber fuel hose by biodiesel use. Energy, 68, 364-369. http://dx.doi.org/10.1016/j.energy.2014.02.087.

Akhlaghi, S., Gedde, U. W., Hedenqvist, M. S., Braña, M. T. C., & Bellander, M. (2015). Deterioration of automotive rubbers in liquid biofuels: a review. Renewable & Sustainable Energy Reviews, 43, 1238-1248. http://dx.doi.org/10.1016/j.rser.2014.11.096.

Giakoumis, E. G. (2013). A statistical investigation of biodiesel physical and chemical properties, and their correlation with the degree of unsaturation. Renewable Energy , 50, 858-878. http://dx.doi.org/10.1016/j.renene.2012.07.040.

Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable & Sustainable Energy Reviews, 14(1), 200-216. http://dx.doi.org/10.1016/j.rser.2009.07.017.

Oliveira, I. T. D., Pacheco, E. B. A. V., Visconte, L. L. Y., Oliveira, M. R. L., & Rubinger, M. M. M. (2010). Efeito de um novo acelerador de vulcanização nas propriedades reométricas de composições de borracha nitrílica com diferentes teores de AN. Polímeros: Ciência e Tecnologia, 20(Especial), 366-370. http://dx.doi.org/10.1590/S0104-14282010005000059.

Flory, P. J. (1953). Principles of polymer chemistry. Ithaca: Cornell University.

Barlkanl, M., & Hepburn, C. (1992). Determination of crosslink density by swelling in the castable polyurethane elastomer based on 1/4 – cyclohexane diisocyanate and para-phenylene diisocyante. Iranian Journal of Polymer Science & Technology , 1(1), 1-5.

Forrest, M. J. (2001). Rubber analysis – polymers, compounds and products . Wolverhampton: Rapra Technology Ltd.

Ibarra, L., Rodríguez, A., & Mora-Barrantes, I. (2008). Crosslinking of unfilled carboxylated nitrile rubber with different systems: influence on properties. Journal of Applied Polymer Science, 108(4), 2197-2205. http://dx.doi.org/10.1002/app.27893.

Haseeb, A. S. M. A., Fazal, M. A., Jahirul, M. I., & Masjuki, H. H. (2011). Compatibility of automotive materials in biodiesel: a review. Fuel, 90(3), 922-931. http://dx.doi.org/10.1016/j.fuel.2010.10.042.

Santos, E. M., Piovesan, N. D., Barros, E. G., & Moreira, M. A. (2013). Low linolenic soybeans for biodiesel: characteristics, performance and advantages. Fuel, 104, 861-864. http://dx.doi.org/10.1016/j.fuel.2012.06.014.
 

5b7c4a610e88253343896e54 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections