Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Elastic modulus of PVDF with bentonite or LiNbO3 using deformation energy

Pintão, Carlos Alberto Fonzar; Cardoso, Celso Xavier

Downloads: 0
Views: 75


Polyvinylidene fluoride (PVDF) is valued for its properties of transparency to light, lightness, flexibility, mechanical strength, chemical stability, ease of processing, and low-cost production. Ceramics have low mechanical strength and poor processability, but have excellent piezo- and pyroelectric characteristics. The deficiencies of ceramics can be minimized by combining them with polymers. Accordingly, PVDF samples with different percentages of bentonite or LiNbO3 were used to obtain composites via “casting,” and the modulus of elasticity (E) of the composites was studied using a specially designed system. The method used to obtain E took into account the strain energy and the strength of the materials. Based on the results, E decreased with an increased percentage of bentonite and, in the case of LiNbO3 , for the percentages of 30% and 35% increases.


bentonite, deformation energy, LiNbO3, modulus of elasticity, PVDF


1. Truel, R., Elbaum, C., & Chic, B. B. (1969). Ultrasonic methods in solid state physics. New York: Academic Press.

2. Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. New York: Academic Press.

3. Roh, Y., Varadan, V. V., & Varadan, V. K. (2002). Characterization of all the elastic, dielectric, and piezoelectric constants of uniaxially oriented poled PVDF films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(6), 836-847. PMid:12075977. http://dx.doi.org/10.1109/TUFFC.2002.1009344.

4. Motyl, E. (2001). Comparison between step and pulsed electroacoustic techniques using both PVDF and LiNbO3 transducers. Journal of Electrostatics, 51-52, 530-537. http://dx.doi.org/10.1016/S0304-3886(01)00064-X.

5. Costa, C. M., Mendes, S. F., Sencadas, V., Ferreira, A., Gregorio, R. Jr, Ribelles, J. L. G., & Méndez, S. L. (2010). Influence of processing parameters on the polymer phase, microstructure and macroscopic properties of poly (vinilidene fluoride)/ Pb(Zr0.53Ti0.47)O3 composites. Journal of Non-Crystalline Solids, 356(41-42), 2127-2133. http://dx.doi.org/10.1016/j.jnoncrysol.2010.07.037.

6. Mendes, S. F., Costa, C. M., Caparros, C. V., Sencadas, V. S., & Lanceros-Méndez, S. (2012). Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. Journal of Materials Science, 47(3), 1378-1388. http://dx.doi.org/10.1007/s10853-011-5916- 7.

7. Mendes, S. F., Costa, C. M., Sencadas, V., Nunes, J. S., Costa, P., Gregorio, R., Jr., & Méndez, S. L. (2009). Effect of the ceramic grain size and concentration on the dynamical mechanical and dielectic behavior of poly (vinilidene fluoride)/Pb(Zr0.53Ti0.47)O3 composites. Applied Physics A: Materials Science & Processing, 96(4), 899-908. http://dx.doi.org/10.1007/s00339-009-5141-2.

8. Lovinger, A. J. (1982). Developments in crystalline polymers. Journal of Polymer Science Part C: Polymer Letters, 20(10), 559-560. http://dx.doi.org/10.1002/pol.1982.130201011.

9. Broadhurst, M. G., Davis, G. T., Mckinney, J. E., & Collins, R. E. (1978). Piezoelectricity and pyroelectricity in polyvinylidene fluoride: a model. Journal of Applied Physics, 49(10), 4992- 4997. http://dx.doi.org/10.1063/1.324445.

10. Gregorio, R., Jr., & Cestari, M. (1994). Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride). Journal of Polymer Science. Part B, Polymer Physics, 32(5), 859-870. http://dx.doi.org/10.1002/polb.1994.090320509.

11. Inderherbergh, J. (1990). Polyvinylidene fluoride (PVDF) appearance, general properties and processing. Ferroelectrics, 115(4), 295-302. http://dx.doi.org/10.1080/00150193.1991.1 1876614.

12. Dargaville, T. R., Celina, M., & Chaplya, P. M. (2005). Evaluation of piezoelectric Poly (vinylidene fluoride) polymers for use in space environments. I. Temperature limitations. Journal of Polymer Science. Part B, Polymer Physics, 43(11), 1310-1320. http://dx.doi.org/10.1002/polb.20436.

13. Dargaville, T. R., Celina, M., Martin, J. W., & Banks, B. A. (2005). Evaluation of piezoelectric PVDF polymers for use in space environments. II. Effects of atomic oxygen and vacuum UV exposure. Journal of Polymer Science. Part B, Polymer Physics, 43(18), 2503-2513. http://dx.doi.org/10.1002/polb.20549.

14. Malmonge, L. F., Langiano, S. C., Cordeiro, J. M. M., Mattoso, L. H. C., & Malmonge, J. A. (2010). Thermal and Mechanical Properties of PVDF/PANI Blends. Materials Research, 13(4), 465-470. http://dx.doi.org/10.1590/S1516-14392010000400007.

15. Xu, H. P., Dang, Z. M., Jiang, M. J., Yao, S. H., & Bai, J. (2008). Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. Journal of Materials Chemistry, 18(2), 229-234. http://dx.doi.org/10.1039/B713857A.

16. Tauchert, T. R. (1974). Energy principles in structural mechanics. New York: McGraw-Hill.

17. Timoshenko, S. P., & Goodier, J. N. (1980). Theory of elasticity. 3rd ed. Rio de Janeiro: Guanabara Dois.

18. Pasco Scientific. (1996). User’s Guide: Science Workshop™ Interface, Version 2.2. Roseville: Pasco Partners LLC.

19. Wallner, G. M., Major, Z., Maier, G. A., & Lang, R. W. (2008). Fracture analysis of annealed PVDF films. Polymer Testing, 27(3), 392-402. http://dx.doi.org/10.1016/j.polymertesting.2008.01.006.

5b7c0cef0e88254a6d896e51 polimeros Articles
Links & Downloads


Share this page
Page Sections