Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.05316
Polímeros: Ciência e Tecnologia
Original Article

Production of biodegradable starch nanocomposites using cellulose nanocrystals extracted from coconut fibers

Cerqueira, Jamile Costa; Penha, Josenai da Silva

Downloads: 0
Views: 57

Abstract

Different polymeric matrices have been investigated for use in the development of biodegradable films. The incorporation of cellulose nanocrystals in such films has particularly attracted attention because of the potential for achieving improved properties of starch nanocomposites. In the present study, cellulose nanocrystals were extracted from coconut fibers and incorporated in cassava and potato starch films at different concentrations. The properties of the different nanobiocomposite films were comparatively evaluated, including their barrier and mechanical properties. All the films, regardless of the nanocrystal concentration, were found to exhibit low solubility in water, with increased moisture content particularly observed in the films with higher nanocrystal concentrations. The potato starch film with the lowest nanocrystal concentration was found to exhibit the best mechanical properties. The observations of this study indicated that the source of the starch and the nanocrystal concentration determined the properties of the nanobiocomposite films.

Keywords

lignocellulosic fiber, biodegradable film, polymeric matrix, nanocrystal.

References

1. Bueno, R. L. C. (2010). Estudo da biodegradação do potencial de utilização de polilactato (PLA) como embalagem para alimento fermentado (Dissertação de mestrado). Centro de Ciências Tecnológicas, Universidade Regional de Blumenau, Blumenau.

2. Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Filmes de amido: produção, propriedades e potencial de utilização. Semina: Ciências Agrárias, 31(1), 137-156. http://dx.doi.org/10.5433/1679-0359.2010v31n1p137.

3. Debiagi, F., Ivano, L. R. P. F. M., Nascimento, P. H. A., & Mali, S. (2012). Embalagens biodegradáveis de amido reforçadas com fibras lignocelulósicas provenientes de resíduos agroindustriais. BBR - Biochemistry and Biotechnology Reports, 1(2), 57–67. http://dx.doi.org/10.5433/2316-5200.2012.

4. Fiori, A. P. S. de M., Gabiraba, V. P., Praxedes, A. P. P., Nunes, M. R. S., Balliano, T. L., Silva, R. C. da, Tonholo, J., & Ribeiro, A. S.. (2014). Preparação e caracterização de nanocompósitos poliméricos baseados em quitosana e argilo minerais. Polímeros: Ciência e Tecnologia, 24(5), 628-635. http://dx.doi.org/10.1590/0104-1428.1572.

5. Machado, B. A. S., Reis, J. H. O., Silva, J. B., Cruz, L. S., Nunes, I. L., Vargas, F. P., & Druzian, J. I. (2014). Obtenção de nanocelulose da fibra de coco verde e incorporação em filmes biodegradáveis de amido plastificados com glicerol. Quimica Nova, 37(8), 1-8. http://dx.doi.org/10.5935/0100-4042.20140220.

6. Costa, S. S., Druzian, J. I., Machado, B. A. S., De Souza, C. O., & Guimarães, A. G. (2014). Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis. PLoS One, 9(11), 112554. PMid:25383783. http://dx.doi.org/10.1371/journal.pone.0112554.

7. Rhim, J. W., Park, H. M., & Ha, C. S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10), 1629-1652. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008.

8. Tang, X. G., Kumar, P., Alavi, S., & Sandeep, K. P. (2012). Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Critical Reviews in Food Science and Nutrition, 52(5), 426-442. PMid:22369261. http://dx.doi.org/10.1080/10408398.2010.500508.

9. Shankar, S., & Rhim, J. W. (2016). Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 135, 18-26. PMid:26453846. http://dx.doi.org/10.1016/j.carbpol.2015.08.082.

10. Machado, B. A. S., Nunes, I. L., Pereira, F. V., & Druzian, J. I. (2012). Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante. Ciência Rural, 42(11), 2085-2091. http://dx.doi.org/10.1590/S0103-84782012001100028.

11. Dantas, E. A., Costa, S. S., Cruz, L. S., Bramont, W. B., Costa, A. S., Padilha, F. F., Druzian, J. I., & Machado, B. A. S. (2015). Characterization and evaluation of the antioxidant properties of biodegradable films incorporated with tropical fruit pulps. Ciência Rural, 45(1), 142-148. http://dx.doi.org/10.1590/0103-8478cr20131458.

12. Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A. S., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings, 2(1), 200-207. https://doi.org/10.1016/j.matpr.2015.04.022.

13. Lomelí-ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II—Structure and properties. Carbohydrate Polymers, 102, 576-583. PMid:24507321. http://dx.doi.org/10.1016/j.carbpol.2013.11.020.

14. Reis, L. C. B., Souza, C. O., Silva, J. B. A., Martins, A. C., Nunes, I. L., & Druzian, J. I. (2015). Active biocomposites of cassava starch: The effect of yerba mate extract and mango pulp as antioxidant additives on the properties and the stability of a packaged product. Food and Bioproducts Processing, 94, 382-391. http://dx.doi.org/10.1016/j.fbp.2014.05.004.

15. Agustin, M. B., Ahmmad, B., De Leon, E. R. P., Buenaobra, J. L., Salazar, J. R., & Hirose, F. (2013). Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer Composites, 34(8), 1325-1332. http://dx.doi.org/10.1002/pc.22546.

16. Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Kadam, P. G., & Mhaske, S. T. (2015). Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Applied Nanoscience, 5(3), 281-290. http://dx.doi.org/10.1007/s13204-014-0316-3.

17. Alves, J. S., Reis, K. C., Menezes, E. G. T., Pereira, F. V., & Pereira, J. (2015). Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydrate Polymers, 115, 215-222. PMid:25439888. http://dx.doi.org/10.1016/j.carbpol.2014.08.057.

18. Alemdar, A., & Sain, S. (2008). Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565. http://dx.doi.org/10.1016/j.compscitech.2007.05.044.

19. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., & Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83(4), 1804-1811. http://dx.doi.org/10.1016/j.carbpol.2010.10.040.

20. Sá, R. M. D., Miranda, C. S. D., & José, N. M. (2015). Preparation and characterization of nanowhiskers cellulose from fiber arrowroot (Maranta arundinacea). Materials Research, 18(suppl 2), 225-229. http://dx.doi.org/10.1590/1516-1439.366214.

21. Rambabu, N., Panthapulakkal, S., Sain, M., & Dalai, A. K. (2015). Production of nanocellulose fibers from pinecone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Industrial Crops and Products, 83, 746-754. http://dx.doi.org/10.1016/j.indcrop.2015.11.083.

22. Machado, B. A. S., Nunes, I. L., Vargas, F. V., & Druzian, J. I. (2012). Desenvolvimento e avaliação da eficácia de filmes biodegradáveis de amido de mandioca com nanocelulose como reforço e com extrato de erva-mate como aditivo antioxidante. Ciência Rural, 42(11), 2085-2091. http://dx.doi.org/10.1590/S0103-84782012001100028.

23. Pereira, F. V., Paula, E. L. D., Mesquita, J. P. D., Lucas, A. D. A., & Mano, V. (2014). Bio-based nanocomposites obtained by incorporation of cellulose nanocrystals into biodegradable polymers through casting, layer-by-layer or electrospinning methods. Quimica Nova, 37(7), 1209-1219. http://dx.doi.org/10.5935/0100-4042.20140141.

24. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. http://dx.doi.org/10.1016/j.carbpol.2007.07.026.

25. Ishizaki, M. H., Visconte, L. L. Y., Furtado, C. R. G., Leite, M. C. A. M., & Leblanc, J. L. (2006). Caracterização mecânica e morfológica de compósitos de polipropileno e fibras de coco verde: influência do teor de fibra e das condições de mistura. Polímeros: Ciência e Tecnologia, 16(3), 182-186. http://dx.doi.org/10.1590/S0104-14282006000300006.

26. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., Glenn, G., Orts, W. J., & Imam, S. H. (2010). Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers, 81(1), 83-92. http://dx.doi.org/10.1016/j.carbpol.2010.01.059.

27. Nascimento, D. M., Dias, A. F., Almeida, J. S., Morais, J. P. S., Souza, M. S. M., Fo., Figueiredo, M. C., & Rosa, M. F. (2013). Nova abordagem para de obtenção de nanocristais de celulose a partir de um material rico em lignina. In Anais do VII Workshop de Nanotecnologia Aplicada ao Agronegócio- Instrumentação (pp. 150-155). São Carlos: Embrapa.

28. Figueiredo, N. (2009). A importância dos selos verdes. São Paulo: IBDA. Retrieved in 2017, November 10, from http://www.forumdaconstrucao.com.br/conteudo.php?a=23&Cod=694

29. Oliveira, L. G. B., & Moraes, M. F. V. (2007). O consumo consciente de embalagens sustentáveis. In Anais do 4° Congresso Internacional de Pesquisa em Design Brasil (pp. 1-7). Rio de Janeiro: DesignBrasil.

30. Samir, A. S. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6(2), 612-626. PMid:15762621. http://dx.doi.org/10.1021/bm0493685.

31. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. PMid:1660498. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2.

32. Goering, H. K., & Van Soest, P. J. (1970). Forage fiber analysis - Apparatus, reagents, procedures and some applications: Agricultural Handbook. Beltsville: United States Department of Agriculture. Retrieved in 2017, Novomber 10, from http://naldc.nal.usda.gov/download/CAT87209099/PDF

33. Van-den-Berg, O., Capadona, J. R., & Weder, C. (2007). Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromolecules, 8(4), 1353-1357. PMid:17343361. http://dx.doi.org/10.1021/bm061104q.

34. Veiga-Santos, P., Oliveira, L. M., Cereda, M. P., Alves, A. J., & Scamparini, A. R. P. (2005). Mechanical properties, hydrophilicity and water activity of starch-gum films: effect of additives and deacetylated xanthan gum. Food Hydrocolloids, 19(2), 341-349. http://dx.doi.org/10.1016/j.foodhyd.2004.07.006.

35. Olivato, J. B., Mali, S., & Grossmann, M. V. E. (2006). Efeito de embalagem biodegradável de amido no armazenamento de queijo processado. Ciências Agrárias, 27(1), 81-88. http://dx.doi.org/10.5433/1679-0359.2006v27n1p81.

36. Gontard, N., Guilbert, S., & Cuq, J. L. (1993). Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. Journal of Food Science, 58(1), 206-211. http://dx.doi.org/10.1111/j.1365-2621.1993.tb03246.x.

37. Fakhouri, F. M., Costa, D., Yamashita, F., Martelli, S. M., Jesus, R. C., Alganer, K., Collares-Queiroz, F. P., & Innocentini-Mei, L. H. (2013). Comparative study of processing methods for starch/gelatin films. Carbohydrate Polymers, 95(2), 681-689. PMid:23648030. http://dx.doi.org/10.1016/j.carbpol.2013.03.027.

38. Trugilho, P. F., Lima, J. T., & Mendes, L. M. (1996). Influência da idade nas características físico-químicas e anatômicas da madeira de Eucalyptus saligna. Revista Cerne, 2(1), 94-111.

39. Corradini, E., Rosa, M. F., Macedo, B. P., Paladin, P. D., & Mattoso, L. H. C. (2009). Composição química, propriedades mecânicas e térmicas da fibra de frutos de cultivares de coco verde. Revista Brasileira de Fruticultura, 31(3), 837-846. http://dx.doi.org/10.1590/S0100-29452009000300030.

40. Rosa, M. F., Medeiros, E. S., Imam, S. H., Nascimento, D. M., Monteiro, A. K., Malgonge, J. A., & Mattoso, L. H. C. (2009). Nanocelulose de fibras de coco imaturo para aplicação em nanocompósitos. In Anais do V Workshop de Rede Nanotecnologia Aplicada ao Agronegócio (p. 1-4). São Carlos: EMBRAPA.

41. Mesquita, J. P., Donnici, C. L., & Pereira, F. V. (2010). Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules, 11(2), 473-480. PMid:20055503. http://dx.doi.org/10.1021/bm9011985.

42. Cranston, E. D., & Gray, D. G. (2008). Birefringence in spin-coated films containing cellulose nanocrystals. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 325(1), 44-51. http://dx.doi.org/10.1016/j.colsurfa.2008.04.042.

43. Pinto, G. V. V. V., Abreu, C. A. M., Knoechelmann, A., & Almeida, Y. M. B. (1999). Caracterização físico-química da superfície de filmes de poli (tereftalato de etileno). Polímeros: Ciência e Tecnologia, 9(4), 184-188. http://dx.doi.org/10.1590/S0104-14281999000400030.

44. Dufresne, A., Paillet, M., Putaux, J. L., Canet, R., Carmona, F., Delhaes, P., & Cui, S. (2002). Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites. Journal of Materials Science, 37(18), 3015-3023. http://dx.doi.org/10.1023/A:1019659624567.

45. Silva, R. M., Pereira, F. V., Mota, F. A., Watanabe, E., Soares, S. M., & Santos, M. H. (2016). Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals. Materials Science and Engineering C, 58, 389-395. PMid:26478325. http://dx.doi.org/10.1016/j.msec.2015.08.041.

46. Henrique, C. M., Cereda, M. P., & Sarmento, S. B. S. (2008). Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca. Ciência e Tecnologia de Alimentos, 28(1), 231-240.

47. Jansson, A., & Thuvander, F. (2004). Influence of thickness on the mechanical properties for starch films. Carbohydrate Polymers, 56(4), 499-503. http://dx.doi.org/10.1016/j.carbpol.2004.03.019.

48. Xiong, H. G., Tang, S., Tang, H., & Zou, P. (2008). The structure and properties of a starch-based biodegradable film. Carbohydrate Polymers, 71(2), 263-268. http://dx.doi.org/10.1016/j.carbpol.2007.05.035.

49. Perazzo, K. K. N. C. L., Vasconcelos-Conceição, A. C. V., Santos, J. C. P., Jesus-Assis, D., Souza, C. O., & Druzian, J. I. (2014). Properties and antioxidant action of actives cassava starch films incorporated with green tea and palm oil extracts. PLoS One, 9(9), e105199. PMid:25251437. http://dx.doi.org/10.1371/journal.pone.0105199.

50. Jiang, S., Liu, C., Wang, X., Xiong, L., & Sun, Q. (2016). Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. Lebensmittel-Wissenschaft + Technologie, 69, 251-257. http://dx.doi.org/10.1016/j.lwt.2016.01.053.

51. Fakhouri, F. M., Fontes, L. C. B., Gonçalves, P. D. M., Milanez, C. R., Steel, C. J., & Collares-Queiroz, F. P. (2007). Filmes e coberturas comestíveis compostas à base de amidos nativos e gelatina na conservação e aceitação sensorial de uvas Crimson. Ciência e Tecnologia de Alimentos, 27(2), 369-375. http://dx.doi.org/10.1590/S0101-20612007000200027.

52. Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2015). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342-352.

53. Rubentheren, V., Ward, T. A., Chee, C. Y., & Nair, P. (2015). Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose, 22(4), 2529-2541. http://dx.doi.org/10.1007/s10570-015-0650-y.

54. Pagno, C. H., Costa, T. M. H., Menezes, E. W., Benvenutti, E. V., Hertz, P. F., Matte, C. R., & Flôres, S. H. (2015). Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173, 755-762. PMid:25466086. http://dx.doi.org/10.1016/j.foodchem.2014.10.068.

55. Silva, J., Pereira, F. V., & Druzian, J. I. (2012). Cassava starch‐based films plasticized with sucrose and inverted sugar and reinforced with cellulose nanocrystals. Journal of Food Science, 77(6), 14-19. PMid:22582979. http://dx.doi.org/10.1111/j.1750-3841.2012.02710.x.

56. Salaberria, A. M., Labidi, J., & Fernandes, S. C. (2014). Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chemical Engineering Journal, 256, 356-364. http://dx.doi.org/10.1016/j.cej.2014.07.009.

57. Moura, M. R. D., Aouada, F. A., Souza, J. R., & Mattoso, L. H. C. (2014). Preparação de novos nanobiocompósitos comestíveis ativos contendo nanoemulsão de canela e pectina. Polimeros Ciência e Tecnologia, 24(4), 486-490. http://dx.doi.org/10.1590/0104-1428.1508.

58. Chen, Y., Liu, C., Chang, P. R., Anderson, D. P., & Huneault, M. A. (2009). Pea starch‐based composite films with pea hull fibers and pea hull fiber‐derived nanowhiskers. Polymer Engineering and Science, 49(2), 369-378. http://dx.doi.org/10.1002/pen.21290.

59. Hulleman, S. H., Janssen, F. H., & Feil, H. (1998). The role of water during plasticization of native starches. Polymer, 39(10), 2043-2048. http://dx.doi.org/10.1016/S0032-3861(97)00301-7.

60. Oun, A. A., & Rhim, J. W. (2015). Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydrate Polymers, 134, 20-29. PMid:26428095. http://dx.doi.org/10.1016/j.carbpol.2015.07.053.

61. Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. http://dx.doi.org/10.1016/j.carbpol.2009.11.041.

62. Savadekar, N. R., Karande, V. S., Vigneshwaran, N., Kadam, P. G., & Mhaske, S. T. (2015). Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch. Applied Nanoscience, 5(3), 281-290. http://dx.doi.org/10.1007/s13204-014-0316-3.

63. Reddy, J. P., & Rhim, J. W. (2014). Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480-488. PMid:24906782. http://dx.doi.org/10.1016/j.carbpol.2014.04.056.

64. Xu, X., Wang, H., Jiang, L., Wang, X., Payne, S. A., Zhu, J. Y., & Li, R. (2014). Comparison between cellulose nanocrystal and cellulose nanofibril reinforced poly(ethylene oxide) nanofibers and their novel shish-kebab-like crystalline structures. Macromolecules, 47(10), 3409-3416. http://dx.doi.org/10.1021/ma402627j.

65. Rhim, J. W., Reddy, J. P., & Luo, X. (2015). Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose, 22(1), 407-420. http://dx.doi.org/10.1007/s10570-014-0517-7.

66. Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. http://dx.doi.org/10.1016/j.carbpol.2009.11.041.

67. Lu, Y., Weng, L., & Cao, X. (2006). Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydrate Polymers, 63(2), 198-204. http://dx.doi.org/10.1016/j.carbpol.2005.08.027.

68. Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena‐Bustillos, R. J., & McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. Journal of Food Science, 74(5), N31-N35. PMid:19646052. http://dx.doi.org/10.1111/j.1750-3841.2009.01186.x.
 

5b7c1dfb0e8825ac20896e7a polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections