Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.04116
Polímeros: Ciência e Tecnologia
Original Article

Influence of addition of silanized nanosilica and glycerol on hydrophobicity of starch using a factorial design

Lopes, Fernando Luis Panin; Kupfer, Vicente Lira; Oliveira, Júlio César Dainezi de; Radovanovic, Eduardo; Rinaldi, Andrelson Wellington; Moisés, Murilo Pereira; Favaro, Silvia Luciana

Downloads: 0
Views: 75

Abstract

The thermoplastic starch (TPS) is regarded as a promising material for manufacturing packaging and products with biodegradable properties. This study aimed at obtaining hydrophobic starch using silanized silica nanoparticles (nSS) with hexamethyldisilazane. A factorial design 22 with central point was developed to evaluate the influence of glycerol (plasticizer) and nSS addition on the properties of water absorption, solubility and TPS contact angle. The materials morphology was also evaluated by means of scanning electron microscopy. The amount of glycerol and nSS influenced on starch hydrophobic character, for the increase of the glycerol dosage contributed to the increase of absorption and solubility of TPS in water. On the other hand, nSS has greater influence on the characteristics related to the TPS surface, favoring an increase of up to 27% in the contact angle values. Therefore, the sample with the greatest hydrophobic character was obtained by using lowest amounts of glycerol (30%) and highest amounts of nSS (5%).

Keywords

biodegradable polymer, thermoplastic starch, silanized nanosilica.

References

1. Avérous, L. (2004). Biodegradable multiphase systems based on plasticized starch: a review. Journal of Macromolecular Science-Polymer, 44(3), 231-274. http://dx.doi.org/10.1081/MC-200029326.

2. Corradini, E., Medeiros, E. S., Carvalho, A. J. F., Curvelo, A. A. S., & Mattoso, L. H. C. (2006). Mechanical and morphological characterization of starch/zein blends plasticized with glycerol. Journal of Applied Polymer Science, 101(6), 4133-4139. http://dx.doi.org/10.1002/app.23570.

3. Leng, Y., Zhang, Y., Chen, X., Yi, C., Fan, B., & Wu, Q. (2011). Hydrophobic thermoplastic starches modified with polyester-based polyurethane microparticles: effects of various diisocyanates. Industrial & Engineering Chemistry Research, 50(19), 11130-11135. http://dx.doi.org/10.1021/ie201133z.

4. Ning, W., Jiugao, Y., Xiaofei, M., & Ying, W. (2007). The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydrate Polymers, 67(3), 446-453. http://dx.doi.org/10.1016/j.carbpol.2006.06.014.

5. Ghavimi, A. A. S., Ebrahimzadeh, M. H., Solati-Hashjinand, M., & Osman, A. A. N. (2015). Polycaprolactone/starch composite: fabrication, structure, properties and applications. Journal of Biomedical Materials Research. Part A, 103(7), 2482-2498. PMid:25407786. http://dx.doi.org/10.1002/jbm.a.35371.

6. Cano, A., Fortunati, E., Cháfer, M., González-Martínez, C., Chiralt, A., & Kenny, J. M. (2015). Effect of cellulose nanocrystals on the properties of pea starch– poly(vinyl alcohol) blend films. Journal of Materials Science, 50(21), 6979-6992. http://dx.doi.org/10.1007/s10853-015-9249-9.

7. Bobbio, F. O., & Bobbio, P. A. (1995). Introdução à química de alimentos. São Paulo: Livraria Varela.

8. Melo, C., Garcia, S. P., Grossmann, E. V. M., Yamashita, F., Dall’Antônia, H. L., & Mali, S. (2011). Properties of extruded xanthan-starch-clay nanocomposite films. Brazilian Archives of Biology and Technology, 54(6), 1223-1333. http://dx.doi.org/10.1590/S1516-89132011000600019.

9. Mali, S., Grossmann, M. V. E., & Yamashita, F. (2010). Filmes de amido: produção propriedades e potencial de utilização. Semina. Ciências Agrárias, 31(1), 137-156. http://dx.doi.org/10.5433/1679-0359.2010v31n1p137.

10. Pellicano, M., Pachekoski, W., & Agnelli, J. A. M. (2009). Influência da adição de amido de mandioca na biodegradação da blenda polimérica PHBV/Ecoflex. Polímeros: Ciência e Tecnologia, 19(3), 212-217. http://dx.doi.org/10.1590/S0104-14282009000300009.

11. Henrique, C. M., Cereda, M. P., & Sarmento, S. B. S. (2008). Características físicas de filmes biodegradáveis produzidos a partir de amidos modificados de mandioca.Ciência e Tecnologia de Alimentos, 28(1), 231-240. http://dx.doi.org/10.1590/S0101-20612008000100033.

12. Roz, A. L., Carvalho, A. J. F., Gandini, A., & Curvelo, A. A. S. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417-424. http://dx.doi.org/10.1016/j. carbpol.2005.09.017.

13. Mathew, A. P., & Dufresne, A. (2002). Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules, 3(5), 1101-1108. PMid:12217059. http://dx.doi.org/10.1021/bm020065p.

14. Barra, G. M. O., Roeder, J., Soldi, V., Pires, A. T. N., & Agnelli, J. A. M. (2003). Blendas de poliamida 6/elastômero: propriedades e influência da adição de agente compatibilizante. Polímeros: Ciência e Tecnologia, 13(2), 94-101. http://dx.doi.org/10.1590/S0104-14282003000200006.

15. Moriana, R., Vilaplana, F., Karlsson, S., & Ribes-Greus, S. (2011). Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Composites Part A: Applied Science and Manufacturing, 42(1), 30-40. http://dx.doi.org/10.1016/j.compositesa.2010.10.001.

16. Richardson, P. H., Trksak, R. M., Tsai, J. J., & Weisser, E. M. (2003). US Patent 6521088 B1. Degraded hydrophobic, particulate starches and their use in paper sizing. United States: United States Patent.

17. Taghizadeh, A., Sarazin, P., & Favis, B. D. (2013). High molecular weight plasticizers in thermoplastic starch/ polyethylene blends. Journal of Materials Science, 48(4), 1799-1811. http://dx.doi.org/10.1007/s10853-012-6943-8.

18. Mortazavi, S., Ghasemi, S., & Oromiehie, A. (2013). Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polymer Testing, 32(3), 482-491. http://dx.doi.org/10.1016/j.polymertesting.2013.01.004.

19. Kim, D. Y. (2005). US Patent 2005220860-A1. Powder form aggregate, useful as multi-functional cosmetics, comprises liposome having cosmetic ingredient, solvent and liposome agent; and porous powders impregnated with jojoba oil emollient ingredient. United States: United States Patent.

20. Gontard, N., Duchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids - watervapor permeability and other physical-properties.International Journal of Food Science & Technology, 29(1), 39-50. http://dx.doi.org/10.1111/j.1365-2621.1994.tb02045.x.

21. Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of glycerol on physical and mechanical properties of wheat starch edible films. Journal of Texture Studies, 44(3), 176-186. http://dx.doi.org/10.1111/jtxs.12007.

22. Plotegher, F., & Ribeiro, C. (2013). Preparação e caracterização de compósitos poliméricos baseados em amido termoplástico e materiais de alta área superficial: zeólita ZSM-5 e sílica coloidal. Polímeros: Ciência e Tecnologia, 23(2), 236-241. http://dx.doi.org/10.4322/polimeros.2013.078.

23. Pervaiz, M., Oakley, P., & Sain, M. (2014). Development of novel wax-enabled thermoplastic starch blends and their morphological, thermal and environmental properties. International Journal of Composite Materials, 4(5), 204-212. http://dx.doi.org/10.5923/j.cmaterials.20140405.02.

24. Matta, M. D., Jr., Sarmento, S. B. S., Sarantópoulos, C. I. G. L., & Zocchi, S. S. (2011). Propriedades de barreira e solubilidade de filmes de amido de ervilha associado com goma xantana e glicerol. Polímeros: Ciência e Tecnologia, 21(1), 67-72. http://dx.doi.org/10.1590/S0104-14282011005000011.

25. Leyva, M. B., Chávez, P. T., Wong, B. R., Jatomea, M. P., & Bojórquez, F. B. (2008). Physical and mechanical properties of durum wheat (triticum durum) starch films prepared with a and b type granules. Stärke, 60(10), 559-567. http://dx.doi.org/10.1002/star.200800227.

26. Laohakunjit, N., & Noomhorm, A. (2004). Effect of plasticizer on mechanical and barrier properties of rice starch film. Stärke, 56(8), 348-356. http://dx.doi.org/10.1002/star.200300249.

27. Zhang, Y., & Han, J. H. (2006). Mechanical and thermal characteristics of pea starch films plasticized with monosaccharides and polyols. Journal of Food Science, 71(2), E109-E118. http://dx.doi.org/10.1111/j.1365-2621.2006.tb08891.x.

28. Garcia, M. A., Pinotti, A., & Zaritzky, N. E. (2006). Physicochemical water vapor barrier and mechanical properties of corn starch and chitosan composite films. Stärke, 58(9), 453-463. http://dx.doi.org/10.1002/star.200500484.

29. Thiré, R. M. S. M., Simão, R. A., & Andrade, C. T. (2003). High resolution imaging of the microstructure of maize starch films. Carbohydrate Polymers, 54(2), 149-158. http://dx.doi. org/10.1016/S0144-8617(03)00167-X.

30. Müller, C. M. O., Yamashita, F., & Laurindo, J. B. (2008). Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydrate Polymers, 72(1), 82-87. http://dx.doi.org/10.1016/j.carbpol.2007.07.026.

31. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., & Pessan, L. A. (2012). Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, 87(4), 2614-2618. http://dx.doi.org/10.1016/j.carbpol.2011.11.035.

32. Olivato, J. B., Grossmann, M. V. E., Bilck, A. P., & Yamashita, F. (2012). Effect of organic acids as additives on the performance of thermoplastic starch/polyester blown films. Carbohydrate Polymers, 90(1), 159-164. PMid:24751025. http://dx.doi.org/10.1016/j.carbpol.2012.05.009.

33. Nobrega, M. M., Olivato, J. B., Müller, C. M. O., & Yamashita, F. (2012). Biodegradable starch-based films containing saturated fatty acids: thermal, infrared and Raman spectroscopic characterization. Polímeros: Ciência e Tecnologia, 22(5), 475-480. http://dx.doi.org/10.1590/S0104-14282012005000068.

5b7c0fd70e88253372896e51 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections