Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.04016
Polímeros: Ciência e Tecnologia
Original Article

Cowper-Symonds parameters estimation for ABS material using design of experiments with finite element simulation

Marangoni, Alexandre Luis; Massaroppi Junior, Ernesto

Downloads: 0
Views: 126

Abstract

Polymers exhibit significant strain rate dependence in their mechanical strength. The impact simulations accuracy is associated with the use of mechanical properties obtained at high strain rates. These properties are often not available to engineers introducing a risk on the product development step. This paper presents a method for adjusting the parameters of the Cowper-Symonds, used for a constitutive material model, through computational experiments carried out considering the simulation of the Izod impact test.The proposed adjustment method allows reducing the Izod impact strength error from 44% to 2.4%.

Keywords

cowper-symonds, finite element analysis, izod, space filling design, strain rate

References

1. Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method (Vol. 1, 5th ed., 689 p.). Oxford: Butterworth Heinemann.

2. Livermore Software Technology Corporation. (2014). LS-DYNA keyword user’s manual, revision 5471 (Vol. 1). Livermore: LSTC.

3. Altair. (2014). HyperMesh 13.0 manual. Retrieved in 1 April 2016, from http://www.altairhyperworks.com/product/HyperMesh

4. Altair. (2014). HyperView 13.0 manual. Retrieved in 1 April 2016, from http://www.altairhyperworks.com/product/ HyperView

5. Xiao, X. (2008). Dynamic tensile testing of plastic materials. Polymer Testing, 27(2), 164-178. http://dx.doi.org/10.1016/j.polymertesting.2007.09.010.

6. Peixinho, N., & Doellinger, C. (2010). Characterization of dynamic material properties of light alloys for crashworthiness applications. Materials Research, 13(4), 471-474. http://dx.doi.org/10.1590/S1516-14392010000400008.

7. Peixinho, N., & Pinho, A. (2007). Study of viscoplasticity models for the impact behavior of high-strengh steels. Journal of Computational and Nonlinear Dynamics, 2(2), 114-123. http://dx.doi.org/10.1115/1.2447129.

8. Alves, M. (2000). Material constitutive law for large strains and strain rates. Journal of Engineering Mechanics, 126(2), 215-218. http://dx.doi.org/10.1061/(ASCE)0733-9399(2000)126:2(215).

9. Năstăsescu, V., & Iliescu, N. (2010). Upon accompanying of the experimental testing of materials by numerical analysis with FEM. Acta Technica Napocensis - Applied Mathematics and Mechanics, 2(53), 173-178. Retrieved in 1 April 2016, from artens2010.utcluj.ro/acta%20tehnica%20nr53%20 vol2%202010/10.doc

10. Zrida, M., Laurent, H., Grolleau, V., Rio, G., Khlif, M., Guines, D., Masmoudi, N., & Bradai, C. (2010). High-speed tensile tests on a polypropylene material. Polymer Testing, 29(6), 685-692. http://dx.doi.org/10.1016/j.polymertesting.2010.05.007.

11. SAS Institute. (2010). User Guide - SAS JMP 10.0. Cary: SAS Institute.

12. Baco, S. B. (2016). Uso de experimentos computacionais no desenvolvimento de produtos: um estudo de caso na indústria de linha branca (Dissertação de mestrado). Universidade Federal de São Carlos, São Carlos.

13. International Standard Organization. (2000). ISO 180:2000 - Plastics -- Determination of Izod impact strength. Geneva: ISO.

14. Computer Aided Material Preselection by Uniform Standard. (2016). Plastics Material Database. Frankfurt: Campus. Retrieved in 1 April 2016, from http://www.campusplastics.com

15. Lobo, H., & Croop, B. (2009). A robust methodology to calibrate crash material models for polymers. In NAFEMS World Congress (14 p). Ithaca: DatapointLabs. Retrieved in 1 April 2016, from http://www.datapointlabs.com/testpaks/2009/NAFEMS09.pdf

5b7c10040e88253773896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections