Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends

Iván Restrepo; Carlos Medina; Viviana Meruane; Ali Akbari-Fakhrabadi; Paulo Flores; Saddys Rodríguez-Llamazares

Downloads: 0
Views: 53


Abstract: The effect of molecular weights and hydrolysis degrees (HD) of polyvinyl alcohol (PVA) on thermal and mechanical properties and crystallinity of polylactic acid (PLA)/PVA blends was investigated. Blends were prepared by the melt blending method using PLA/PVA ratios: 80/20, 90/10 and 97/3 wt. %. A single glass transition temperatures was observed for all PLA/PVA blends, suggesting the formation of binary compatible blends at concentration range studied. Thermogravimetric analysis results showed a better thermal stability for PLA/PVA blends containing PVA of higher Mw and HD. According to mechanical properties, low quantities of PVA (3 wt. %) do not affect the tensile strength of blends (irrespective of Mw and HD). However, as the PVA content increases, tensile strength tends to lower values, especially for blends with 20 wt.% of PVA, with 98% of HD.


material testing, melt blending, polylactic acid, polyvinyl alcohol, polymer blend


1 Ge, H., Yang, F., Hao, Y., Wu, G., Zhang, H., & Dong, L. (2013). Thermal, mechanical and rheological properties of plasticized poly (L-lactic acid). Journal of Applied Polymer Science, 127(4), 2832-2839. http://dx.doi.org/10.1002/app.37620.

2 European Bioplastic (2016). Bioplastics market data. Retrieved in 2017, April 28, from www.europeanbioplastics.org/market/

3 Auras, R., Harte, B., & Selke, S. (2004). Effect of water on the oxygen barrier properties of poly (ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 92(3), 1790-1803. http://dx.doi.org/10.1002/app.20148.

4 Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. PMid:15468294. http://dx.doi.org/10.1002/mabi.200400043.

5 Auras, B. R. A., Singh, S. P., & Singh, J. J. (2005). Evaluation of oriented poly(lactide) polymers vs. existing pet and oriented ps for fresh food service containers. Packaging Technology & Science, 18(4), 207-216. http://dx.doi.org/10.1002/pts.692.

6 Suyatma, N. E., Copinet, A., Tighzert, L., & Coma, V. (2004). Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 12(1), 1-6. http://dx.doi.org/10.1023/B:JOOE.0000003121.12800.4e.

7 Rudnik, E., & Briassoulis, D. (2010). Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. Journal of Polymers and the Environment, 19(1), 18-39. http://dx.doi.org/10.1007/s10924-010-0243-7.

8 Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S., & Singh, S. P. (2007). Compostability of bioplastic packaging materials: an overview. Macromolecular Bioscience , 7(3), 255-277. PMid:17370278. http://dx.doi.org/10.1002/mabi.200600168.

9 Li, H.-Z., Chen, S.-C., & Wang, Y.-Z. (2014). Thermoplastic PVA/PLA blends with improved processability and hydrophobicity. Industrial & Engineering Chemistry Research , 53(44), 17355-17361. http://dx.doi.org/10.1021/ie502531w.

10 Wang, H., Sheng, M., Zhai, L., & Li, Y. (2008). Study on hydrophilicity and degradability of polyvinyl alcohol/polylactic acid blend film. Journal of Biomedical Engineering , 25(1), 139-142. PMid:18435276.

11 Yeh, J.-T., Yang, M.-G., Wu, C.-H., Wu, X., & Wu, C.-S. (2008). Study on the crystallization kinetic and characterization of poly (lactic acid) and poly(vinyl alcohol) blends. Polymer-Plastics Technology and Engineering, 47(12), 1289-1296. http://dx.doi.org/10.1080/03602550802497958.

12 Shuai, X., He, Y., Asakawa, N., & Inoue, Y. (2001). Miscibility and phase structure of binary blends of poly (l-lactide) and poly (vinyl alcohol). Journal of Applied Polymer Science, 81(3), 762-772. http://dx.doi.org/10.1002/app.1493.

13 Lipsa, R., Tudorachi, N., & Vasile, C. (2008). Poly (vinyl alcohol)/poly (lactic acid) blends biodegradable films doped with colloidal silver. Revue Roumaine de Chimie , 53(5), 405-413. Retrieved in 2017, April 28, from https://www.researchgate.net/publication/237081349

14 Tsuji, H., & Muramatsu, H. (2001). Blends of aliphatic polyesters IV. Morphology swelling behavior, and surface and bulk properties of blends from hydrophobic poly (L -lactide) and hydrophilic poly (vinyl alcohol), 1-4. Journal of Applied Polymer Science , 81(9), 2151-2160. http://dx.doi.org/10.1002/app.1651.

15 An Tran, N. H., Brünig, H., Hinüber, C., & Heinrich, G. (2014). Melt spinning of biodegradable nanofibrillary structures from poly (lactic acid) and poly (vinyl alcohol) blends. Macromolecular Materials and Engineering, 299(2), 219-227. http://dx.doi.org/10.1002/mame.201300125.

16 Jazrawi, B., Noroozi, N., Ansari, M., & Hatzikiriakos, S. G. (2013). Processing aids for biodegradable polymers. Journal of Applied Polymer Science, 128(6), 3592-3600. http://dx.doi.org/10.1002/app.38562.

17 Pyda, M., Bopp, R. C., & Wunderlich, B. (2004). Heat capacity of poly (lactic acid). The Journal of Chemical Thermodynamics, 36(9), 731-742. http://dx.doi.org/10.1016/j.jct.2004.05.003.

18 Lim, R.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly (lactic acid). Progress in Polymer Science, 33(8), 820-852. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004.

19 Leissa, A. W. (1973). The free vibration of rectangular plates. Journal of Sound and Vibration, 31(3), 257-293. http://dx.doi.org/10.1016/S0022-460X(73)80371-2.

20 Fukushima, K., Tabuani, D., & Camino, G. (2009). Nanocomposites of PLA and PCL based on montmorrillonite and sepiolite. Materials Science and Engineering C , 29(4), 1433-1441. http://dx.doi.org/10.1016/j.msec.2008.11.005.

21 Pluta, M. (2006). Melt compounding of polylactide/organoclay: structure and properties of nanocomposites. Journal of Polymer Science Part B Polymer Physics , 44(23), 3392-3405. http://dx.doi.org/10.1002/polb.20957.

22 Zhang, L., Goh, S. H., & Lee, S. Y. (1998). Miscibility and crystallization behavior of poly(L-lactide)/poly(p-vinylphenol) blends. Polymer, 39(20), 4841-4847. http://dx.doi.org/10.1016/S0032-3861(97)10167-7.

23 Tsuji, H. (2005). Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromolecular Bioscience, 5(7), 569-597. PMid:15997437. http://dx.doi.org/10.1002/mabi.200500062.

24 Nalbandi, A. (2001). Kinetics of thermal degradation of polylactic acid under N2 atmosphere. Iranian Polymer Journal, 10(6), 371-376. Retrieved in 2017, April 28, from http://en.journals.sid.ir/ViewPaper.aspx?ID=17392

25 Ding, J., Chen, S., Wang, X., & Wang, Y. (2009). Synthesis and properties of thermoplastic poly (vinyl alcohol) -graft-lactic acid copolymers. Industrial & Engineering Chemistry Research, 48(2), 788-793. http://dx.doi.org/10.1021/ie8013428.

26 Holland, B. J., & Hay, J. N. (2001). The thermal degradation of poly (vinyl alcohol). Polymer, 42(16), 6775-6783. http://dx.doi.org/10.1016/S0032-3861(01)00166-5.

27 Ballistreri, A., Foti, S., Montaudo, G., & Scamporrino, E. (1980). Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. Journal of Polymer Science: Polymer Chemistry Edition, 18, 1147-1153.

28 Maria, T. M. C., Carvalho, R. A., Sobral, P. J. A., Habitante, A. M. B. Q., & Solorza-Feria, J. (2008). The effect of the degree of hydrolysis of the PVA and the plasticizer concentration on the color, opacity, and thermal and mechanical properties of films based on PVA and gelatin blends. Journal of Food Engineering, 87(2), 191-199. http://dx.doi.org/10.1016/j.jfoodeng.2007.11.026.

29 Peng, Z., & Kong, L. X. (2007). A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation & Stability, 92(6), 1061-1071. http://dx.doi.org/10.1016/j.polymdegradstab.2007.02.012.

30 Alexy, P., Bakos, D., Crkonova, G., Kolomaznik, K., & Krsiak, M. (2001). Blends of Polyvinyl alcohol with collagen hydrolysate: thermal degradation and processing properties. Macromolecular Symposia, 170(1), 41-49. http://dx.doi.org/10.1002/1521-3900(200106)170:1<41::AID-MASY41>3.0.CO;2-B.

31 Assendert, H. E., & Windle, A. H. (1998). Crystallinity in poly (vinyl alcohol). An X-ray diffraction study of atactic PVOH. Polymer, 39(18), 4295-4302. http://dx.doi.org/10.1016/S0032-3861(97)10296-8.

32 Puiggali, J., Ikada, Y., Tsuji, H., Cartier, L., Okihara, T., & Lotz, B. (2000). The frustrated structure of poly(L-lactide). Polymer, 41(25), 8921-8930. http://dx.doi.org/10.1016/S0032-3861(00)00235-4.

33 Tabatabaei, S. H., & Ajji, A. (2011). Crystal structure and orientation of uniaxially and biaxially oriented PLA and PP nanoclay composite films. Journal of Applied Polymer Science, 124, 4854-4863.

34 Zhang, R., Xu, W., & Jiang, F. (2012). Fabrication and characterization of dense chitosan/polyvinyl-alcohol/ poly-lactic-acid blend membranes. Fibers and Polymers, 13(5), 571-575. http://dx.doi.org/10.1007/s12221-012-0571-4.

5b7c5a450e8825a007896e52 polimeros Articles
Links & Downloads


Share this page
Page Sections