Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Whey protein-based films incorporated with oregano essential oil

Oliveira, Sandra Prestes Lessa Fernandes; Bertan, Larissa Canhadas; Rensis, Christiane Maciel Vasconcellos Barros De; Bilck, Ana Paula; Vianna, Priscila Cristina Bizam

Downloads: 0
Views: 99


This study aimed to prepare whey protein-based films incorporated with oregano essential oil at different concentrations, and evaluate their properties and antimicrobial activity. Films were more flexible with increasing the concentration of oregano oil and water vapor permeability was higher in the films with oregano oil. Increasing the concentration of essential oil decreased the water solubility. The solubility of control film and film with 1.5% oregano oil was 20.2 and 14.0%, respectively. The addition of 1% of oregano oil improved the resistance of the films. The tensile strength for the control film was 66.0 MPa, while for the film with 1% of oregano oil was 108.7 MPa. Films containing 1.5% oregano oil showed higher antimicrobial activity. The zone of inhibition ranged from 0 to 1.7 cm. The results showed that the whey protein-based films incorporated with oregano essential oil has potential application as active packaging.


active film, whey protein, natural antimicrobial, packaging.


1. Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6), 292-303. http://dx.doi.org/10.1016/j.tifs.2011.02.004.

2. Krochta, J. M., & De Mulder-Johnston, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 51(2), 61-74. Retrieved in 07 March 2017, from http://agris.fao.org/agris-search/search.do?recordID=US9729236

3. McHugh, T. H., & Senesi, E. (2000). Apple wraps: a novel method to improve the quality and extend the shelf life of fresh-cut apples. Journal of Food Science, 65(3), 480-485. http://dx.doi.org/10.1111/j.1365-2621.2000.tb16032.x.

4. Morr, C. V., & Ha, Y. W. (1993). Whey protein concentrates and isolates: processing and functional properties. Critical Reviews in Food Science and Nutrition, 33(6), 431-476. PMid:8216810. http://dx.doi.org/10.1080/10408399309527643.

5. Kim, S.-J., & Ustunol, Z. (2001). Sensory attributes of whey protein isolate and candellila wax emulsion edible films. Journal of Food Science, 66(6), 909-911. http://dx.doi.org/10.1111/j.1365-2621.2001.tb15195.x.

6. Yoshida, C. M. P. (2002). Aplicação de concentrado proteico de soro de leite bovino na elaboração de filmes comestíveis (Doctoral thesis). Universidade Estadual de Campinas, Campinas.

7. Pérez-Gago, M. B., & Krochta, J. M. (2002). Formation and properties of whey protein films and coatings. In A. Gennadios (Ed.), Protein-based films and coatings (pp. 159-180). Boca Raton: CRC Press.

8. Ramos, Ó. L., Reinas, I., Silva, S. I., Fernandes, J. C., Cerqueira, M. A., Pereira, R. N., Vicente, A. A., Poças, M. F., Pintado, M. E., & Malcata, F. X. (2013). Effect of whey protein purity and glycerol content upon physical properties of edible films manufactured therefrom. Food Hydrocolloids, 30(1), 110-122. http://dx.doi.org/10.1016/j.foodhyd.2012.05.001.

9. Khwaldia, K., Perez, C., Banon, S., Desobry, S., & Hardy, J. (2004). Milk proteins for edible film and coatings. Critical Reviews in Food Science and Nutrition, 44(4), 239-251. PMid:15462128. http://dx.doi.org/10.1080/10408690490464906.

10. Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein-based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644. http://dx.doi.org/10.1016/j.foodres.2006.01.013.

11. Gounga, M. E., Xu, S. Y., & Wang, Z. (2007). Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation. Journal of Food Engineering, 83(4), 521-530. http://dx.doi.org/10.1016/j.jfoodeng.2007.04.008.

12. Gennadios, A., McHugh, T. H., Weller, C. L., & Krochta, J. M. (1994). Edible coatings and films based on proteins. In J. M. Krochta, E. A. Baldwin & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 201-277). Lancaster: Technomic Publishing.

13. Appendini, P., & Hotchkiss, J. H. (2002). Review of antimicrobial food packaging. Innovative Food Science & Emerging Technologies, 3(2), 113-126. http://dx.doi.org/10.1016/S1466-8564(02)00012-7.

14. Soares, N. F. F., Silva, W. A., Pires, A. C. S., Camiloto, G. P., & Silva, O. S. (2009). Novos desenvolvimentos e aplicações em embalagens de alimentos. Revista Ceres, 56(4), 370-378. Retrieved in 07 March 2017, from http://www.ceres.ufv.br/ojs/index.php/ceres/article/view/3438/1341

15. Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., Tan, A. C., & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology, 33(2), 110-123. http://dx.doi.org/10.1016/j.tifs.2013.08.001.

16. Han, J. H. (2002). Protein-based edible films and coatings carrying antimicrobial agents. In A. Gennadios (Ed.), Protein-based films and coatings (pp. 485-499). Boca Raton: CRC Press.

17. Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. http://dx.doi.org/10.1016/S0924-2244(02)00280-7.

18. Dorman, H. J. D., & Deans, S. G. (2000). Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88(2), 308-316. PMid:10736000. http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x.

19. Baydar, H., Sağdiç, O., Özkan, G., & Karadoğan, T. (2004). Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Control, 15(3), 169-172. http://dx.doi.org/10.1016/S0956-7135(03)00028-8.

20. Souza, E. L., Stamford, T. L. M., & Lima, E. O. (2006). Sensitivity of spoiling and pathogen food-related bacteria to Origanum vulgare L. (Lamiaceae) essential oil. Brazilian Journal of Microbiology, 37(4), 527-532. http://dx.doi.org/10.1590/S1517-83822006000400023.

21. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kokkini, S., Lanaras, T., & Arsenakis, M. (1996). Antimicrobial and cytotoxic activities of origanum essential oils. Journal of Agricultural and Food Chemistry, 44(5), 1202-1205. http://dx.doi.org/10.1021/jf950540t.

22. Gyawali, R., & Ibrahim, S. A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. http://dx.doi.org/10.1016/j.foodcont.2014.05.047.

23. Sahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., Agar, G., & Özer, H. (2004). Biological activities of the essential oil and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control, 15(7), 549-557. http://dx.doi.org/10.1016/j.foodcont.2003.08.009.

24. Pelissari, F. M., Grossmann, M. V. E., Yamashita, F., & Pineda, E. A. G. (2009). Antimicrobial, mechanical, and barrier properties of cassava starch−chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry, 57(16), 7499-7504. PMid:19627142. http://dx.doi.org/10.1021/jf9002363.

25. Oussalah, M., Caillet, S., Salmiéri, S., Saucier, L., & Lacroix, M. (2004). Antimicrobial and antioxidant effects of milk protein based film containing essential oils for the preservation of whole beef muscle. Journal of Agricultural and Food Chemistry, 52(18), 5598-5605. PMid:15373399. http://dx.doi.org/10.1021/jf049389q.

26. Yoshida, C. M. P., & Antunes, A. J. (2009). Aplicação de filmes proteicos à base de soro de leite. Ciência e Tecnologia de Alimentos, 29(2), 420-430. http://dx.doi.org/10.1590/S0101-20612009000200030.

27. American Society for Testing and Materials – ASTM. (1995). E96-95: standard test methods of water vapor transmission of materials. West Conshohocken: ASTM.

28. Gontard, N., Duchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat and lipids: water vapour permeability and other physical properties. International Journal of Food Science & Technology, 29(1), 39-50. http://dx.doi.org/10.1111/j.1365-2621.1994.tb02045.x.

29. American Society for Testing and Materials – ASTM. (2010). D882-10: tensile properties of thin plastic sheeting. West Conshohocken: ASTM. Annual Book of ASTM Standards.

30. Bertan, L. C., Tanada-Palmu, P. S., Siani, A. C., & Grosso, C. R. F. (2005). Effect of fatty acids and “Brazilian elemi” on composite films based on gelatin. Food Hydrocolloids, 19(1), 73-82. http://dx.doi.org/10.1016/j.foodhyd.2004.04.017.

31. Mei, Y., & Zhao, Y. (2003). Barrier and mechanical properties of milk protein-based edible films containing nutraceuticals. Journal of Agricultural and Food Chemistry, 51(7), 1914-1918. PMid:12643651. http://dx.doi.org/10.1021/jf025944h.

32. McHugh, T. H., & Krochta, J. M. (1994). Milk-protein-based edible films and coating. Food Technology, 48(1), 97-103.

33. Fairley, P., Monahan, F. J., German, B. B., & Krochta, J. M. (1996). Mechanical properties and water vapor permeability of edible films from whey proteins isolate and N-ethylamaleimidie or cysteine. Journal of Agricultural and Food Chemistry, 44(12), 3789-3792. http://dx.doi.org/10.1021/jf9601731.

34. Galietta, G., Di Gioia, L., Guilbert, S., & Cuq, B. (1998). Mechanical and thermomechanical properties of films based on whey proteins as affected by plasticizer and crosslinking agents. Journal of Dairy Science, 81(12), 3123-3130. http://dx.doi.org/10.3168/jds.S0022-0302(98)75877-1.

35. Bertan, L. C. (2003). Desenvolvimento e caracterização de filmes simples e compostos a base de gelatina, ácidos graxos e breu branco (Master's dissertation). Universidade Estadual de Campinas, Campinas.

5b7b12a20e8825e156896e52 polimeros Articles
Links & Downloads


Share this page
Page Sections