Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/doi/10.1590/0104-1428.01816
Polímeros: Ciência e Tecnologia
Original Article

Potential doxorubicin delivery system based on magnetic gelatin microspheres crosslinked with sugars

Josefa Souza; Manoel Silva; Marcos Costa

Downloads: 0
Views: 1132

Abstract

Abstract: The preparation and characterization of magnetic microspheres based on gelatin for use in drug delivery systems are reported. Sugars were employed as crosslinking agents and type A gelatin and type B gelatin were compared to prepare microspheres by water-in-oil emulsion. The influence of gelatin and sucrose concentration, temperature and stirring speed on microbeads’ characteristics was studied. The gelatin concentration and stirring speed were the parameters directly associated with the particle sizes. We found no relevant difference between the use of type A and type B gelatin. In addition, the gelatin crosslinking study revealed that sucrose is not a crosslinking agent but fructose can crosslink the protein chains when the reaction medium has pH 9. The size of the microspheres varied from 5 to 60 μm as measured by optical microscopic images. Doxorubicin adsorption and release were successfully performed using the microspheres crosslinked with fructose under the action of an external magnetic field. It was observed that the microspheres absorbed 69% of the doxorubicin that was in solution. After 24 h, about 45% of the DOX was displaced from microspheres to saline medium in the free form in the solution.

Keywords

gelatin microspheres, magnetic properties, sugar crosslinking

References

1 Singh, S., Rama Rao, K. V., Venugopal, K., & Manikandan, R. (2002). Alteration in dissolution characteristics of gelatin-containing formulations: a review of the problem, test methods, and solutions. Pharmaceutical Technology, 26, 36-58. Retrieved in 2016, March 11, from http://www.pharmtech.com/pharmaceutical-technology-04-01-2002

2 Sahoo, N., Sahoo, R. K., Biswas, N., Guha, A., & Kuotsu, K. (2015). Recent advancement of gelatin nanoparticles in drug and vaccine delivery. International Journal of Biological Macromolecules, 81, 317-331. PMid:26277745. http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006.

3 Young, S., Wong, M., Tabata, Y., & Mikos, A. G. (2005). Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release , 109(1-3), 256-274. PMid:16266768. http://dx.doi.org/10.1016/j.jconrel.2005.09.023.

4 Coimbra, P., Gil, M. H., & Figueiredo, M. (2014). Tailoring the properties of gelatin films for drug delivery applications: Influence of the chemical cross-linking method. International Journal of Biological Macromolecules, 70, 10-19. PMid:24971558. http://dx.doi.org/10.1016/j.ijbiomac.2014.06.021.

5 Matsuda, S., Se, N., Iwata, H., & Ikada, Y. (2002). Evaluation of the antiadhesion potential of UV cross-linked gelatin films in a rat abdominal model. Biomaterials , 23(14), 2901-2908. PMid:12069331. http://dx.doi.org/10.1016/S0142-9612(01)00418-5.

6 Mutalik, V., Manjeshwar, L. S., Wali, A., Sairam, M., Sreedhar, B., Raju, K. V. S. N., & Aminabhavi, T. M. (2007). Aqueous-solution and solid-film properties of poly(vinyl alcohol), poly(vinyl pyrrolidone), gelatin, starch, and carboxymethylcellulose polymers. Journal of Applied Polymer Science, 106(2), 765-774. http://dx.doi.org/10.1002/app.25427.

7 Cortesi, R., Nastruzzi, C., & Davis, S. S. (1998). Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials, 19(18), 1641-1649. PMid:9839999. http://dx.doi.org/10.1016/S0142-9612(98)00034-9.

8 Rathna, G. V. N. (2008). Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability. Journal of Materials Science: Materials in Medicine , 19(6), 2351-2358. PMid:18157687. http://dx.doi.org/10.1007/s10856-007-3334-9.

9 Lau, T. T., Lee, L. Q. P., Leong, W., & Wang, D. (2012). Formation of model hepatocellular aggregates in a hydrogel scaffold using degradable genipin crosslinked gelatin microspheres as cell carriers. Biomedical Materials, 7(6), 065003-065011. PMid:23117748. http://dx.doi.org/10.1088/1748-6041/7/6/065003.

10 Ulubayram, K., Aksu, E., Gurhan, S. I. D., Serbetci, K., & Hasirci, N. (2002). Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. Journal of Biomaterials Science: Polymer Edition, 13(11), 1203-1219. PMid:12518800. http://dx.doi.org/10.1163/156856202320892966.

11 Samad, A., Sultana, Y., Khar, R. K., Chuttani, K., & Mishra, A. K. (2009). Gelatin microspheres of rifampicin cross-linked with sucrose using thermal gelation method for the treatment of tuberculosis. Journal of Microencapsulation, 26(1), 83-89. PMid:18608799. http://dx.doi.org/10.1080/02652040802172638.

12 Saravanan, M., Anbu, J., Maharajan, G., & Pillai, K. S. (2008). Targeted delivery of diclofenac sodium via gelatin magnetic microspheres formulated for intra-arterial administration. Journal of Drug Targeting, 16(5), 366-378. PMid:18569281. http://dx.doi.org/10.1080/10611860802046224.

13 Phadke, K. V., Manjeshwar, L. S., & Aminabhavi, T. M. (2014). Biodegradable polymeric microspheres of gelatin and carboxymethyl guar gum for controlled release of theophylline. Polymer Bulletin, 71(7), 1625-1643. http://dx.doi.org/10.1007/s00289-014-1145-y.

14 Kajjari, P. B., Manjeshwar, L. S., & Aminabhavi, T. M. (2011). Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Industrial & Engineering Chemistry Research , 50(13), 7833-7840. http://dx.doi.org/10.1021/ie200516k.

15 Saravanan, M., Anbu, J., Maharajan, G., & Pillai, K. S. (2008). Targeted delivery of diclofenac sodium via gelatin magnetic microspheres formulated for intra-arterial administration. Journal of Drug Targeting, 16(5), 366-378. PMid:18569281. http://dx.doi.org/10.1080/10611860802046224.

16 Narayani, R., & Panduranga Rao, K. (1996). Gelatin microsphere cocktails of different sizes controlled release of anticancer drugs. International Journal of Pharmaceutics , 143(2), 255-258. http://dx.doi.org/10.1016/S0378-5173(96)04685-6.

17 Rokhade, A. P., Agnihotri, S. A., Patil, S. A., Mallikarjuna, N. N., Kulkarni, P. V., & Aminabhavi, T. M. (2006). Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers, 65(3), 243-252. http://dx.doi.org/10.1016/j.carbpol.2006.01.013.

18 Kajjari, P. B., Manjeshwar, L. S., & Aminabhavi, T. M. (2011). Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of Theophylline. Industrial & Engineering Chemistry Research , 50(13), 7833-7840. http://dx.doi.org/10.1021/ie200516k.

19 Phadke, K. V., Manjeshwar, L. S., & Aminabhavi, T. M. (2014). Biodegradable polymeric microspheres of gelatin and carboxymethyl guar gum for controlled release of theophylline. Polymer Bulletin, 71(7), 1625-1643. http://dx.doi.org/10.1007/s00289-014-1145-y.

20 Schuler, B. J. (2004). Evaluation of novel cross-linking agents for gelatin/collagen matrices (Doctoral thesis). School of Pharmacy, West Virginia University, West Virginia, USA.

21 Pankhurst, Q. A., Connolly, J., Jones, S. K., & Dobson, J. (2003). Applications of magnetic nanoparticles in biomedicine. Journal of Physics D: Applied Physics , 36(13), R167-R181. http://dx.doi.org/10.1088/0022-3727/36/13/201.

22 Arruebo, M., Fernández-Pacheco, R., Ibarra, M. R., & Santamaría, J. (2007). Magnetic nanoparticles for drug delivery. Nano Today, 2(3), 22-32. http://dx.doi.org/10.1016/S1748-0132(07)70084-1.

23 Amali, A. J., & Rana, R. K. (2009). Stabilisation of Pd(0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions. Green Chemistry, 11(11), 1781-1786. http://dx.doi.org/10.1039/b916261p.

24 Allen, T. (1997). Particle size measurement: powder sampling and particle size measurement. 5th ed. London: Chapman & Hall.

25 Santa-Maria, L. C., Costa, M. A. S., Hui, W. S., Santos, F. A. M., & Silva, M. R. (2006). Preparation and characterization of polymer metal composite microspheres. Materials Letters , 60(2), 270-273. http://dx.doi.org/10.1016/j.matlet.2005.08.033.

26 Russo, P. S. (1987). A perspective on reversible gels and related systems (ACS Symposium Series, Vol. 350, pp. 1-21). Washington: American Chemistry Society Symposium.

27 Allinger, N. L., Cava, M. P., Jongh, D. C., Johnson, C. R., Lebel, N. A., & Stevens, C. L. (1976). Organic chemistry. 2nd ed. New York: Worth Publishers.

28 Abete, T., Del Gado, E., Arcangelis, L., Serughetti, D. H., & Djabourov, M. (2008). Re-entrant phase diagram and pH effects in cross-linked gelatin gels. The Journal of Chemical Physics, 129(13), 134902. PMid:19045122. http://dx.doi.org/10.1063/1.2985655.

29 Gioffrè, M., Torricelli, P., Panzavolta, S., Rubini, K., & Bigi, A. (2012). Role of pH on stability and mechanical properties of gelatin films. Journal of Bioactive and Compatible Polymers, 27(1), 67-77. http://dx.doi.org/10.1177/0883911511431484.

30 Gaihre, B., Khil, M. S., Lee, D. R., & Kim, H. Y. (2009). Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. International Journal of Pharmaceutics, 365(1-2), 180-189. PMid:18790029. http://dx.doi.org/10.1016/j.ijpharm.2008.08.020.
 

5b7c549e0e8825c073896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections