Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/doi/10.1590/0104-1428.00916
Polímeros: Ciência e Tecnologia
Original Article

A quantitative relationship between Tgs and chain segment structures of polystyrenes

Yu, Xinliang; Huang, Xianwei

Downloads: 0
Views: 62

Abstract

The glass transition temperature (Tg) is a fundamental characteristic of an amorphous polymer. A quantitative structure-property relationship (QSPR) based on error back-propagation artificial neural network (ANN) was constructed to predict Tgs of 107 polystyrenes. Stepwise multiple linear regression (MLR) analysis was adopted to select an optimal subset of molecular descriptors. The chain segments (or motion units) of polymer backbones with 20 carbons in length (10 repeating units) were used to calculate these molecular descriptors reflecting polymer structures. The relative optimal conditions of ANN were obtained by adjusting various network paramters by trial-and-error. Compared to the model already published in the literature, the optimal ANN model with [4-7-1] network structure in this paper is accurate and acceptable, although our model has more samples in the test set. The results demonstrate the feasibility and powerful ability of the chain segment structures as representative of polymers for developing Tg models of polystyrenes.

Keywords

chain segments, glass transition temperature, polystyrenes, structure-property relationship.

References

1. Katritzky, A. R., Kuanar, M., Slavov, S., Hall, C. D., Karelson, M., Kahn, I., & Dobchev, D. A. (2010). Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction. Chemical Reviews, 110(10), 5714-5789. PMid:20731377. http://dx.doi.org/10.1021/cr900238d.

2. Bicerano, J. (1996). Prediction of polymer properties. 2nd ed. New York: Marcel Dekker.

3. Karelson, M., Lobanov, V. S., & Katritzky, A. R. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96(3), 1027-1044. PMid:11848779. http://dx.doi.org/10.1021/cr950202r.

4. Van Krevelen, D. W. (1976). Properties of polymers their estimation and correlation with chemical structure. 2nd ed. New York: Elsevier.

5. Joyce, S. J., Osguthorpe, D. J., Padgett, J. A., & Price, G. J. (1995). Neural network prediction of glass-transition temperatures from monomer structure. Journal of the Chemical Society, Faraday Transactions, 91(16), 2491-2496. http://dx.doi.org/10.1039/ft9959102491.

6. Katritzky, A. R., Rachwal, P., Law, K. W., Karelson, M., & Lobanov, V. S. (1996). Prediction of polymer glass transition temperatures using a general quantitative structure-property relationship treatment. Journal of Chemical Information and Computer Sciences, 36(4), 879-884. http://dx.doi.org/10.1021/ci950156w.

7. Katritzky, A. R., Sild, S., Lobanov, V., & Karelson, M. (1998). Quantitative Structure-Property Relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers. Journal of Chemical Information and Computer Sciences, 38(2), 300-304. http://dx.doi.org/10.1021/ci9700687.

8. Cao, C., & Lin, Y. (2003). Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers. Journal of Chemical Information and Computer Sciences, 43(2), 643-650. PMid:12653533. http://dx.doi.org/10.1021/ci0202990.

9. Yu, X. L., Wang, X. Y., Li, X. B., Gao, J. W., & Wang, H. L. (2006). Prediction of glass transition temperatures for polystyrenes by a four-descriptors QSPR model. Macromolecular Theory and Simulations, 15(1), 94-99. http://dx.doi.org/10.1002/mats.200500057.

10. Liu, A. H., Wang, X. Y., Wang, L., Wang, H. L., & Wang, H. L. (2007). Prediction of dielectric constants and glass transition temperatures of polymers by quantitative structure property relationships. European Polymer Journal, 43(3), 989-995. http://dx.doi.org/10.1016/j.eurpolymj.2006.12.029.

11. Liu, W. Q., Yi, P. G., & Tang, Z. L. (2006). QSPR models for various properties of polymethacrylates based on quantum chemical descriptors. QSAR & Combinatorial Science, 25(10), 936-943. http://dx.doi.org/10.1002/qsar.200510177.

12. Yu, X. L., Yi, B., Wang, X. Y., & Xie, Z. M. (2007). Correlation between the glass transition temperatures and multipole moments for polymers. Chemical Physics, 332(1), 115-118. http://dx.doi.org/10.1016/j.chemphys.2006.11.029.

13. Brandrup, J., Immergut, E. H., & Grulke, E. A. (1999). Polymer handbook. 4th ed. New York: Wiley-Interscience.

14. Sperling, L. H. (1992). Introduction to physical polymer science. New York: John Wiley & Sons.

15. Gedde, U. W. (1995). Polymer physics. London: Chapman & Hall.

16. Talete SRL. (2012). Dragon: software for molecular descriptor calculation. Version 6.0. Milano: Talete SRL. Retrieved in 20 February 2016, from http://www.talete.mi.it/

17. Yu, X. L., Yi, B., Liu, F., & Wang, X. Y. (2008). Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation. Reactive & Functional Polymers, 68(11), 1557-1562. http://dx.doi.org/10.1016/j.reactfunctpolym.2008.08.009.

18. Todeschini, R., & Consonni, V. (2009). Molecular descriptors for chemoinformatics. Weinheim: Wiley-VCH. 2 v.

19. Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR & Combinatorial Science, 22(1), 69-77. http://dx.doi.org/10.1002/qsar.200390007.

20. Wang, Y. N., Chen, J. W., Li, X. H., Wang, B., Cai, X. Y., & Huang, L. P. (2009). Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation. Atmospheric Environment, 43(5), 1131-1135. http://dx.doi.org/10.1016/j.atmosenv.2008.11.012.

5b7b02700e88254343896e51 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections