Refine your search:
or Author Index

Original Article

A quantitative relationship between Tgs and chain segment structures of polystyrenes

Yu, Xinliang; Huang, Xianwei
Abstract:
The glass transition temperature (Tg) is a fundamental characteristic of an amorphous polymer. A quantitative structure-property relationship (QSPR) based on error back-propagation artificial neural network (ANN) was constructed to predict Tgs of 107 polystyrenes. Stepwise multiple linear regression (MLR) analysis was adopted to select an optimal subset of molecular descriptors. The chain segments (or motion units) of polymer backbones with 20 carbons in length (10 repeating units) were used to calculate these molecular descriptors reflecting polymer structures. The relative optimal conditions of ANN were obtained by adjusting various network paramters by trial-and-error. Compared to the model already published in the literature, the optimal ANN model with [4-7-1] network structure in this paper is accurate and acceptable, although our model has more samples in the test set. The results demonstrate the feasibility and powerful ability of the chain segment structures as representative of polymers for developing Tg models of polystyrenes.
Keywords:
chain segments, glass transition temperature, polystyrenes, structure-property relationship.


Editora Cubo FAQ Helpdesk
BibTeX
RIS
APA
Harvard
IEEE
MLA
Vancouver
Chicago