Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.4322/polimeros.2013.039
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Influence of the Polyhedral Oligomeric Silsesquioxane n-Phenylaminopropyl - POSS in the Thermal Stability and the Glass Transition Temperature of Epoxy Resin

Pistor, Vinicius; Soares, Bluma G.; Mauler, Raquel S.

Downloads: 1
Views: 1379

Abstract

In this study, epoxy nanocomposites containing different fractions of n-phenylaminopropyl (POSS) were prepared. The nanocomposites were studied by transmission electron microscopy (TEM), gel content, dynamicmechanical analysis (DMA) and thermogravimetric analysis (TGA). The parameters for Avrami’s equation were calculated from the degradation curves. The dispersions used to form the nanocomposites were effective above 5 wt % of POSS, and the gel content increased with the addition of POSS. The DMA analysis exhibited an increase in the storage modulus (E’) and a shifting of Tg to higher temperatures upon POSS incorporation. The weight loss indicated that the POSS promoted an increase in thermal stability of the epoxy resin. The Avrami parameters demonstrated that the addition of POSS decreased the Avrami constant (k’), increased the half-life (t1/2) of degradation and promoted changes in the Avrami exponent (n). These results suggest that the increase in the glass transition temperature and thermal stability depend on the reactive groups in the POSS nanoparticles.

Keywords

Epoxy, POSS, nanocomposites, thermal stability, glass transition

References



1. Schwab, J. J. & Lichtenhan, J. D. – Appl. Organomet. Chem., 12, p.707 (1998). http://dx.doi.org/10.1002/ (SICI)1099-0739(199810/11)12:10/11<707::AIDAOC776> 3.0.CO;2-1

2. Scott, D. W. – J. Am. Chem. Soc., 68, p.1877 (1946). http:// dx.doi.org/10.1021/ja01214a002

3. Strachota, A.; Whelan, P.; Kriz, J.; Brus, J.; Urbanová, M.; Slouf, M. & Matejka, L. – Polymer, 48, p.3041 (2007). http://dx.doi.org/10.1016/j.polymer.2007.03.052

4. Liu, L.; Tian, M.; Zhang, W.; Zhang, L. & Mark, J. E. – Polymer, 48, p.3201(2007). http://dx.doi.org/10.1016/j. polymer.2007.03.067

5. Bizet, S.; Galy, J. & Gerard, J-F. – Polymer, 47, p.8219 (2006). http://dx.doi.org/10.1016/j.polymer.2006.09.040

6. Liu, Y.; Zheng, S. & Nie, K. – Polymer, 46, p.12016 (2005). http://dx.doi.org/10.1016/j.polymer.2005.09.056

7. Fu, B. X.; Namani, M. & Lee, A. – Polymer, 44, p.7739 (2003). http://dx.doi.org/10.1016/j.polymer.2003.09.033

8. Ni, Y.; Zhenga, S. & Nie, K. – Polymer, 45, p.5557 (2004). http://dx.doi.org/10.1016/j.polymer.2004.06.008

9. Liu, H.; Zheng, S. & Nie, K. – Macromolecules, 38, p.5088 (2005). http://dx.doi.org/10.1021/ma0504318

10. Wang, X.; Hu, Y.; Song, L.; Xing, W. & Lu, H. – J. Polym. Sci. Part B, Polym. Phys., 48, p.693 (2010). http://dx.doi. org/10.1002/polb.21939

11. Huang, J-M.; Huang, H-J.; Wang, Y-X.; Chen, W-Y. & Chang, F-C. – J. Polym. Sci. Part B, Polym. Phys., 47, p.1927 (2009). http://dx.doi.org/10.1002/polb.21788

12. Ni, Y. & Zheng, S. – Macromol. Chem. Physic., 206, p.2075 (2005). http://dx.doi.org/10.1002/macp.200500267

13. Pistor, V.; Ornaghi, F. G.; Ornaghi, H. L. & Zattera, A.J. – Polym. Compos., 33, p.1224 (2012). http://dx.doi. org/10.1002/pc.22181

14. Ornaghi, H. L.; Pistor, V. & Zattera, A.J. – Journal of Non-Crystalline Solids, 358, p.427 (2012). http://dx.doi. org/10.1016/j.jnoncrysol.2011.10.014

15. Pistor, V.; Ornaghi, F. G.; Ornaghi, H. L. & Zattera, A.J. – Mater. Sci. Eng.: A, 532, p.339 (2012). http://dx.doi. org/10.1016/j.msea.2011.10.100

16. Avrami, M. – J. Chem. Phys., 7, p.1103 (1939).

17. Avrami, M. – J. Chem. Phys., 8, p.212 (1940).

18. Avrami, M. – J. Chem. Phys., 9, p.177 (1941).

19. Evans, U R. – Trans. Faraday Soc., 41, p.365 (1945). http:// dx.doi.org/10.1039/tf9454100365

20. Meares, P. – “Polymers: Structure and Bulk Properties”, Van Nostrand, New York, chap. 5 (1965).

21. Hay J. N. – Br. Polym. J., 3, p.74 (1971). http://dx.doi. org/10.1002/pi.4980030205

22. Jeziorny, A. – Polymer, 19, p.1142 (1978). http://dx.doi. org/10.1016/0032-3861(78)90060-5

23. Poletto, M.; Pistor, V.; Zeni, M. & Zattera, A. J. – Polym. Degrad. Stabil., 96, p.679 (2011). http://dx.doi. org/10.1016/j.polymdegradstab.2010.12.007

24. Waddon, A. J. & Coughlin, E. B. – Chem. Mater., 15, p.4555 (2003). http://dx.doi.org/10.1021/cm034308b

25. Zeng, K. & Zheng, S. – J. Phys. Chem. B, 111, p.13919 (2007). PMid:18031030. http://dx.doi.org/10.1021/jp075891c

26. Loos, M. R.; Coelho, L. A. F.; Pezzin, S. H. & Amico, S. C. – Polímeros, 18, p.76 (2008).

27. Ferry, J. D. – “Viscoelastic Properties of Polymers”, New York, John Wiley & Sons (1980).

28. Pascault, H.S.; Verdu, J. & Williams, R. J. J. – “Thermosetting Polymers”, Marcel Dekker, New York (2002). http://dx.doi.org/10.1201/9780203908402

29. Alves, N. M.; Gómez Ribelles, J. L.; J Gómez Tejedor, A. & Mano, J. F. – Macromolecules, 37, p.3735 (2004). http:// dx.doi.org/10.1021/ma035626z

30. Levchik, S. V. & Weil, E. D. – Polym. Int., 53, p.1901 (2004). http://dx.doi.org/10.1002/pi.1473

31. Levchik, S. V.; Camino, G.; Luda, M. P. Costa, L.; Costes, B.; Henry, Y.; Morel, E. & Muller, G. – Polym. Adv. Technol., 6, p.53 (1995). http://dx.doi.org/10.1002/ pat.1995.220060201

32. Levchik, S. V.; Camino, G.; Luda, M.P.; Costa, L.; Costes, B.; Henry, Y. & Muller, G. M. E. – Polym. Degrad. Stabil., 48, p.359 (1995). http://dx.doi.org/10.1016/0141- 3910(95)00084-Y

33. Pistor, V.; Soares, B. G. & Mauler, R. S. – Polym. Compos., 33, p.1438 (2012).

34. Pistor, V.; Barbosa, L. G.; Soares, B. G. & Mauler, R. S. – Polymer, 53, p.5798 (2012). http://dx.doi.org/10.1016/j. polymer.2012.10.018
588371947f8c9d0a0c8b497e polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections