Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Cellulose nanomaterials: size and surface influence on the thermal and rheological behavior

Marcos Mariano; Nadia El Kissi; Alain Dufresne

Downloads: 0
Views: 43


Abstract: Cellulose nanocrystals (CNC) and nanofibrils (CNF) were obtained by acid hydrolyzis and mechanical treatment, respectively, of cellulosic fibers from paper. Additionally, surface modification was performed for CNC by neutralization (NaOH) and oxidation (TEMPO). The thermal stability, surface properties and rheological behavior of these nanomaterials were compared. A clear difference in CNC surface was found upon neutralization and oxidation treatments, leading to distinct thermal behaviors. Optical and rheological properties were found to be predominantly by the particles size, being strongly affected by inertial effects.


cellulose nanocrystals, cellulose nanofibrils, thermal stability, rheology


1 Castro, D. O., Frollini, E., Marini, J., & Ruvolo-Filho, A. C. (2013). Preparação e caracterização de biocompósitos baseados em fibra de curauá, Biopolietilenode Alta Densidade (BPEAD) e Polibutadieno Líquido Hidroxilado (PBHL). Polímeros. Ciência e Tecnologia, 23(1), 65-73.

2 Martins, M. A., & Mattoso, L. H. C. (2003). Short sisal fiber-reinforced tire rubber composites: dynamic and mechanical properties. Journal of Applied Polymer Science , 91(1), 670-677. http://dx.doi.org/10.1002/app.13210.

3 Müller, C. M. O., Laurindo, J. B., & Yamashita, F. (2009). Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5), 1328-1333. http://dx.doi.org/10.1016/j.foodhyd.2008.09.002.

4 Kalia, S., Kaith, B. S., & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites — a review. Polymer Engineering and Science, 49(7), 1253-1272. http://dx.doi.org/10.1002/pen.21328.

5 Dufresne, A., & Belgacem, M. N. (2013). Cellulose-reinforced composites: from micro-to nanoscale. Polímeros: Ciência e Tecnologia, 23(3), 277-286.

6 Sehaqui, H., Zhou, Q., Ikkala, O., & Berglund, L. (2011). Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 12(10), 3638-3644. PMid:21888417. http://dx.doi.org/10.1021/bm2008907.

7 Abe, K., & Yano, H. (2011). Formation of hydrogels from cellulose nanofibers. Carbohydrate Polymers, 85(4), 733-737. http://dx.doi.org/10.1016/j.carbpol.2011.03.028.

8 Castro, D. O., Frollini, E., Ruvolo, A. C. Fo., & Dufresne, A. (2014). ‘Green Polyethylene’ and curaua cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. Journal of Polymer Science. Part B, Polymer Physics , 53(14), 1010-1019. http://dx.doi.org/10.1002/polb.23729.

9 Hoeng, F., Denneulin, A., Neuman, C., & Bras, J. (2015). Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. Journal of Nanoparticle Research, 17(6), 1-14. http://dx.doi.org/10.1007/s11051-015-3044-z.

10 Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: current status and future prospect. European Polymer Journal, 59, 302-325. http://dx.doi.org/10.1016/j.eurpolymj.2014.07.025.

11 Nechyporchuk, O., Belgacem, M. N., & Pignon, F. (2014). Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydrate Polymers , 112, 432-439. PMid:25129764. http://dx.doi.org/10.1016/j.carbpol.2014.05.092.

12 Sun, W. L., Ye, W. F., & Tao, W. Y. (2013). Improving enzymatic hydrolysis of cellulose from rice straw using an ionic liquid [EMIM]Ac pretreatment. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 35(21), 2042-2050. http://dx.doi.org/10.1080/15567036.2010.532192.

13 Teodoro, K. B. R., Teixeira, E. M., Corrêa, A. C., Campos, A., Marconcini, J., & Mattoso, L. H. C. (2011). Whiskers de fibra de sisal obtidos sob diferentes condições de hidrólise ácida: efeito do tempo e da temperatura de extração. Polímeros: Ciência e Tecnologia, 21(4), 280-285.

14 Siqueira, G., Abdillahi, H., Bras, J., & Dufresne, A. (2010). High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (Capim Dourado). Cellulose (London, England), 17(2), 289-298. http://dx.doi.org/10.1007/s10570-009-9384-z.

15 Silvério, H. A., Flauzino, W. P. No, Silva, I. S. V., Rosa, J. R., Pasquini, D., Assunção, R. M. N., Barud, H. D. S., & Ribeiro, S. J. L. (2014). Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites. Polímeros: Ciência e Tecnologia, 24(6), 683-688.

16 Lin, N., & Dufresne, A. (2013). Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules , 46(14), 5570-5583. http://dx.doi.org/10.1021/ma4010154.

17 Wang, N., Ding, E., & Cheng, R. (2007). Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer, 48(12), 3486-3493. http://dx.doi.org/10.1016/j.polymer.2007.03.062.

18 Nooy, A. E. J., Besemer, A. C., & Bekkum, H. (1995). Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydrate Research , 269(1), 89-98. http://dx.doi.org/10.1016/0008-6215(94)00343-E.

19 Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules , 6(2), 1048-1054. PMid:15762677. http://dx.doi.org/10.1021/bm049300p.

20 Roman, M., & Winter, W. T. (2004). Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules , 5(5), 1671-1677. PMid:15360274. http://dx.doi.org/10.1021/bm034519+.

21 Alvarez, V. A., & Vázquez, A. (2004). Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation & Stability , 84(1), 13-21. http://dx.doi.org/10.1016/j.polymdegradstab.2003.09.003.

22 Samir, M. A. S. A., Alloin, F., & Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules , 6(2), 612-626. PMid:15762621. http://dx.doi.org/10.1021/bm0493685.

23 Lin, N., & Dufresne, A. (2014). Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale , 6(10), 5384-5393. PMid:24706023. http://dx.doi.org/10.1039/C3NR06761K.

24 Matsuoka, S., Kawamoto, H., & Saka, S. (2014). What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. Journal of Analytical and Applied Pyrolysis, 106, 138-146. http://dx.doi.org/10.1016/j.jaap.2014.01.011.

25 Shoji, T., Kawamoto, H., & Saka, S. (2014). Boiling point of levoglucosan and devolatilization temperatures in cellulose pyrolysis measured at different heating area temperatures. Journal of Analytical and Applied Pyrolysis, 109, 185-195. http://dx.doi.org/10.1016/j.jaap.2014.06.014.

26 Karppinen, A., Saarinen, T., Salmela, J., Laukkanen, A., Nuopponen, M., & Seppälä, J. (2012). Flocculation of microfibrillated cellulose in shear flow. Cellulose (London, England), 19(6), 1807-1819. http://dx.doi.org/10.1007/s10570-012-9766-5.

27 Bercea, M., & Navard, P. (2000). Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules, 33(16), 6011-6016. http://dx.doi.org/10.1021/ma000417p.

28 Ureña-Benavides, E. E., Brown, P. J., & Kitchens, C. L. (2010). Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir , 26(17), 14263-14270. PMid:20712357. http://dx.doi.org/10.1021/la102216v.

29 Martoïa, F., Perge, C., Dumont, P. J. J., Orgéas, L., Fardin, M., Manneville, S., & Belgacem, M. N. (2015). Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter, 11(24), 4742-4755. PMid:25892568. http://dx.doi.org/10.1039/C5SM00530B.

30 Pereira, E. A., Brandão, E. M., Borges, S. V., & Maia, M. C. A. (2008). Influence of concentration on the steady and oscillatory shear behavior of umbu pulp. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(21), 87-90. http://dx.doi.org/10.1590/S1415-43662008000100013.

31 Ureña-Benavides, E. E., Ao, G., Davis, V. A., & Kitchens, C. L. (2011). Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules , 44(22), 8990-8998. http://dx.doi.org/10.1021/ma201649f.

32 Tzoumaki, M. V., Moschakis, T., & Biliaderis, C. G. (2013). Effect of soluble polysaccharides addition on rheological properties and microstructure of chitin nanocrystal aqueous dispersions. Carbohydrate Polymers, 95(1), 324-331. PMid:23618276. http://dx.doi.org/10.1016/j.carbpol.2013.02.066.

33 Karppinen, A. (2014). Rheology and flocculation of polymer-modified microfibrillated cellulose suspensions. Finland: Aalto University.

34 Wu, Q., Meng, Y., Wang, S., Li, Y., Fu, S., Ma, L., & Harper, D. (2014). Rheological behavior of cellulose nanocrystal suspension: Influence of concentration and aspect ratio. Journal of Applied Polymer Science, 131(15), 1-8. http://dx.doi.org/10.1002/app.40525.

35 Ewoldt, R. H., Johnston, M. T., & Caretta, L. M. (2015). Experimental challenges of shear rheology : how to avoid bad data. In S. Spagnolie (Ed.), Complex fluids in biological systems (1st ed., pp. 207-241). New York: Springer-Verlag. http://dx.doi.org/10.1007/978-1-4939-2065-5.

36 Baravian, C. (2013). Effets inertiels en rhéométrie instationnaie. In J. L. Grossiord, & A. Ponton (Eds.), La mesure en rhéologie: des avancées récentes aux perspectives (pp. 31-48). France: EDP Sciences.

5b7c540c0e8825ab6e896e54 polimeros Articles
Links & Downloads


Share this page
Page Sections