Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2409
Polímeros: Ciência e Tecnologia
Original Article

Characterization of low cost orally disintegrating film (ODF)

Heinemann, Riana Jordao Barrozo; Vanin, Fernanda Maria; Carvalho, Rosemary Aparecida de; Trindade, Marco Antonio; Fávaro-Trindade, Carmen Sílvia

Downloads: 1
Views: 1033

Abstract

Orally disintegrating films (ODF) produced with a hydrophilic polymers are a thin and flexible material, wich disintegrate in contact with saliva and can vehicule bioactive materials. The aim of this study was to develop and characterize ODF formulation with potential to act as a carrier for different bioactives compounds prepared with low cost polymers. Gelatin (G), starch (S), carboxymethyl cellulose (CMC) and their blends (G:S, CMC:S, CMC:G, and CMC:S:G) were prepared by casting technique with sorbitol as a plasticizer. The formulations were characterized in terms of visual aspects, FTIR, SEM, mechanical characteristics, hygroscopicity, dissolution (in vitro and in vivo) and swelling index. FTIR analysis revealed that no interaction between polymers in ODF was observed. By SEM, it was possible to observe differences on surfaces by different polymers. ODF made with CMC and CMC:G presented higher water absorption (P<0.05) and higher swelling index probably due to the higher water affinity by CMC. Formulations with G, CMC:G and CMC:S:G presented the highest values of tensile strength (P<0.05). ODF prepared with S alone presented the highest disintegration time, the others formulations showed in vitro dissolution ranging from 5.22 to 8.50 min, while in vivo dissolution time ranged from 2.15 to 3.38 min. By the formulations made with G and blend of G:S and CMC:S:G it is possible to develop a ODF of low cost with desired characteristics being an alternative vehicle to deliver functional compounds for continuous use.

Keywords

biofilm, dissolution, polymeric matrix, oral vehicle.

References

1. Dixit, R. P., & Puthli, S. P. (2009). Oral strip technology: overview and future potential. Journal of Controlled Release, 139(2), 94-107. PMid:19559740. http://dx.doi.org/10.1016/j.jconrel.2009.06.014.

2. Garsuch, V., & Breitkreutz, J. (2010). Comparative investigations on different polymers for the preparation of fast-dissolving oral films. The Journal of Pharmacy and Pharmacology, 62(4), 539-545. PMid:20604845. http://dx.doi.org/10.1211/jpp.62.04.0018.

3. Nagaraju, T., Gowthami, R., Rajashekar, M., Sandeep, S., Mallesham, M., Sathish, D., & Kumar, Y. S. (2013). Comprehensive review on oral disintegrating films. Current Drug Delivery, 10(1), 96-108. PMid:22920576. http://dx.doi.org/10.2174/1567201811310010016.

4. Patel, V. F., Liu, F., & Brown, M. B. (2011). Advances in oral transmucosal drug delivery. Journal of Controlled Release, 153(2), 106-116. PMid:21300115. http://dx.doi.org/10.1016/j.jconrel.2011.01.027.

5. Morales, J. O., & McConville, J. T. (2011). Manufacture and characterization of mucoadhesive buccal films. European Journal of Pharmaceutics and Biopharmaceutics, 77(2), 187-199. PMid:21130875. http://dx.doi.org/10.1016/j.ejpb.2010.11.023.

6. Palmer, J. B., Drennan, J. C., & Baba, M. (2000). Evaluation and treatment of swallowing impairments. American Family Physician, 61(8), 2453-2462. PMid:10794585.

7. Dong, Z., Wang, Q., & Du, Y. (2006). Alginate/gelatin blend films and their properties for drug controlled release. Journal of Membrane Science, 1(2), 37-44. http://dx.doi.org/10.1016/j.memsci.2006.01.002.

8. Okabe, H., Suzuki, E., Sugiura, Y., Yanagimoto, K., Takanashi, Y., Hoshi, M., Nogami, E., Nakahara, K., Sekiguchi, T., & Baba, M. (2008). Development of an easily swallowed film formulation. International Journal of Pharmaceutics, 355(1-2), 62-66. PMid:18191926. http://dx.doi.org/10.1016/j.ijpharm.2007.11.038.

9. Peh, K. K., & Wong, C. F. (1999). Polymeric films as vehicle for buccal delivery: swelling, mechanical, and bioadhesive properties. Journal of Pharmacy & Pharmaceutical Sciences, 2(2), 53-61. PMid:10952770.

10. Nishimura, M., Matsuura, K., Tsukioka, T., Yamashita, H., Inagaki, N., Sugiyama, T., & Itoh, Y. (2009). In vitro and in vivo characteristics of prochlorperazine oral disintegrating film. International Journal of Pharmaceutics, 368(1-2), 98-102. PMid:18992311. http://dx.doi.org/10.1016/j.ijpharm.2008.10.002.

11. Corniello, C. (2006). Quick dissolving strips: from concept to commercialization. Drug Delivery Technology, 6(2), 68-71.

12. Pathare, Y. S., Hastak, V. S., & Bajaj, A. N. (2013). Polymers used for fast disintegrating oral films: a review. International Journal of Pharmaceutical Sciences Review and Research, 21(1), 169-178.

13. Sobral, P. J. A., García, F. T., Habitante, A. M. Q. B., & Monterrey-Quintero, E. S. (2004). Propriedades de filmes comestíveis produzidos com diferentes concentrações de plastificantes e de proteínas do músculo de tilápia-do-nilo. Pesquisa Agropecuária Brasileira, 39(3), 255-262. http://dx.doi.org/10.1590/S0100-204X2004000300008.

14. Carvalho, R. A., & Grosso, C. R. F. (2004). Characterization of gelatin based films modified with transglutaminase glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717-726. http://dx.doi.org/10.1016/j.foodhyd.2003.10.005.

15. Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., Santos, R. M. C., Da Silva, F. B. R., Prison, J. M., Solorza-Feria, J., & Habitante, A. M. Q. B. (2008). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Packaging Technology and Science, 21(2), 85-89. http://dx.doi.org/10.1002/pts.781.

16. Thomazine, M., Carvalho, R. A., & Sobral, P. J. (2005). Physical properties of gelatin films plasticized by blends of glycerol and sorbitol. Journal of Food Science, 70(3), E172-E176. http://dx.doi.org/10.1111/j.1365-2621.2005.tb07132.x.

17. Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A., & Netto, F. M. (2010). The use of spray drying technology to reduce bitter taste of casein hydrolysate. Food Hydrocolloids, 24(4), 336-340. http://dx.doi.org/10.1016/j.foodhyd.2009.10.012.

18. Cai, Y. Z., & Corke, H. (2000). Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science-Chicago, 65(7), 1248-1252. http://dx.doi.org/10.1111/j.1365-2621.2000.tb10273.x.

19. Queiroz, G. M. O. D., Silva, L. F., Ferreira, J. T. L., Gomes, J. A. D. C. P., & Sathler, L. (2007). Electrochemical behavior and pH stability of artificial salivas for corrosion tests. Brazilian Oral Research, 21(3), 209-215. PMid:17710285. http://dx.doi.org/10.1590/S1806-83242007000300004.

20. El-Tinay, A. H., & Ismail, I. A. (1995). Effect of some additives and processes on the characteristics of agglomerated and granulated spray-dried Roselle powder. Acta Alimentaria Hungaricae, 14, 283-295.

21. Phan, T. D., Debeaufort, F., Luu, D., & Voilley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973-981. PMid:15713008. http://dx.doi.org/10.1021/jf040309s.

22. Oliveira, A. F. D., Soldi, V., Coelho, C. M. M., Miqueloto, A., & Coimbra, J. L. (2009). Preparation, characterization and properties of polymeric films with potential application in seed coatings. Química Nova, 32(7), 1845-1849. http://dx.doi.org/10.1590/S0100-40422009000700030.

23. Andreuccetti, C., Carvalho, R. A., & Grosso, C. R. (2009). Effect of hydrophobic plasticizers on functional properties of gelatin-based films. Food Research International, 42(8), 1113-1121. http://dx.doi.org/10.1016/j.foodres.2009.05.010.

24. Guan, Y., Liu, X., Zhang, Y., & Yao, K. (1998). Study of phase behavior on chitosan/viscose rayon blend film. Journal of Applied Polymer Science, 67(12), 1965-1972. http://dx.doi.org/10.1002/(SICI)1097-4628(19980321)67:12<1965::AID-APP2>3.0.CO;2-L.

25. Yin, Y. J., Yao, K. D., Cheng, G. X., & Ma, J. B. (1999). Properties of polyelectrolyte complex films of chitosan and gelatin. Polymer International, 48(6), 429-432. http://dx.doi.org/10.1002/(SICI)1097-0126(199906)48:6<429::AID-PI160>3.0.CO;2-1.

26. Tong, Q., Xiao, Q., & Lim, L. T. (2008). Preparation and properties of pullulan–alginate–carboxymethylcellulose blend films. Food Research International, 41(10), 1007-1014. http://dx.doi.org/10.1016/j.foodres.2008.08.005.

27. Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950-1958. http://dx.doi.org/10.1111/j.1365-2621.2009.02012.x.

28. Singh, S., Soni, R., Rawat, M. K., Jain, A., Deshpande, S. B., Singh, S. K., & Muthu, M. S. (2010). In vitro and in vivo evaluation of buccal bioadhesive films containing salbutamol sulphate. Chemical & Pharmaceutical Bulletin, 58(3), 307-311. PMid:20190433. http://dx.doi.org/10.1248/cpb.58.307.

29. Bajpai, A. K., & Shrivastava, J. (2005). In vitro enzymatic degradation kinetics of polymeric blends of crosslinked starch and carboxymethyl cellulose. Polymer International, 54(11), 1524-1536. http://dx.doi.org/10.1002/pi.1878.

30. Cilurzo, F., Cupone, I. E., Minghetti, P., Selmin, F., & Montanari, L. (2008). Fast dissolving films made of maltodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 70(3), 895-900. PMid:18667164. http://dx.doi.org/10.1016/j.ejpb.2008.06.032.

31. Borges, J. G., Tagliamento, M., Silva, A. G., Sobral, P. J. D. A., & Carvalho, R. A. D. (2013). Development and characterization of orally-disintegrating films for propolis delivery. Food Science and Technology, 33, 28-33. http://dx.doi.org/10.1590/S0101-20612013000500005.

32. Liew, K. B., Tan, Y. T., & Peh, K. K. (2012). Characterization of oral disintegrating film containing donepezil for Alzheimer disease. AAPS PharmSciTech, 13(1), 134-142. PMid:22167416. http://dx.doi.org/10.1208/s12249-011-9729-4.

5b7b00de0e8825303f896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections