Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2404
Polímeros: Ciência e Tecnologia
Original Article

Characterization of biopolymers and soy protein isolate-high-methoxyl pectin complex

Freitas, Mírian Luisa Faria; Albano, Kivia Mislaine; Telis, Vânia Regina Nicoletti

Downloads: 0
Views: 1087

Abstract

This study aimed at characterizing the soy protein isolate and high-methoxyl pectin biopolymers individually, and the complexes formed by both at different proportions and pHs in order to find the most suitable pH and biopolymer ratios to food application as stabilizers. The biopolymers were evaluated through solubility, charges, turbidimetry, and optical microscopy analyses; the systems with the pair of biopolymers were analyzed through turbidimetry and optical microscopy. High-methoxyl pectin showed high solubility at all pHs investigated. The soy protein isolate showed low solubility at pH 4.5, which is close to its isoelectric point, and complete solubility at pH 11.0. The formation of complexes suggested an attractive interaction between the biopolymers, with high absorbance reading values and images of complexes from optical microscopy. These complexes were present in systems with pHs below the soy protein isolate's isoelectric point, with positive charges; the high-methoxyl pectin, however, had negative ones.

Keywords

attractive interaction, morphology, solubility, turbidimetry, zeta potential.

References

1. Tömösközi, S., Lásztity, R., Haraszi, R., & Baticz, O. (2001). Isolation and study of the functional properties of pea proteins. Die Nahrung, 45(6), 399-401. PMid:11712241. http://dx.doi.org/10.1002/1521-3803(20011001)45:6<399::AID-FOOD399>3.0.CO;2-0.

2. Lam, M., Paulsen, P., & Corredig, M. (2008). Interactions of soy protein fractions with high-methoxyl pectin. Journal of Agricultural and Food Chemistry, 56(12), 4726-4735. PMid:18517218. http://dx.doi.org/10.1021/jf073375d.

3. Canteri, M. H. H., Moreno, L., Wosiacki, G., & Scherr, A. P. (2012). Pectina: da matéria-prima ao produto final. Polímeros: Ciência e Tecnologia, 22(2), 149-157. http://dx.doi.org/10.1590/S0104-14282012005000024.

4. Santos, M. S., Petkowicz, C. L. O., Haminiuk, C. W. I., & Cândido, L. M. B. (2010). Polissacarídeos extraídos da gabiroba (Campomanesia xanthocarpa Berg): propriedades químicas e perfil reológico. Polímeros: Ciência e Tecnologia, 20, 352-358. http://dx.doi.org/10.1590/S0104-14282010005000056.

5. Tromp, R. H., de Kruif, C. G., van Eijk, M., & Rolin, C. (2004). On the mechanism of stabilization of acidified milk drinks by pectin. Food Hydrocolloids, 18(1), 565-572. http://dx.doi.org/10.1016/j.foodhyd.2003.09.005.

6. Lam, M., Shen, R., Paulsen, P., & Corredig, M. (2007). Pectin stabilization of soy protein isolates at low pH. Food Research International, 40(1), 101-110. http://dx.doi.org/10.1016/j.foodres.2006.08.004.

7. Dong, D., Li, X., Hua, Y., Chen, Y., Kong, X., Zhang, C., & Wang, Q. (2015). Mutual titration of soy proteins and gum arabic and the complexing behavior studied by isothermal titration calorimetry, turbidity and ternary phase boundaries. Food Hydrocolloids, 46(1), 28-36. http://dx.doi.org/10.1016/j.foodhyd.2014.11.019.

8. Jaramillo, D. P., Roberts, R. F., & Coupland, J. N. (2011). Effect of pH on the properties of soy protein-pectin complexes. Food Research International, 44(1), 911-916. http://dx.doi.org/10.1016/j.foodres.2011.01.057.

9. Serfert, Y., Schroder, J., Mescher, A., Laackmann, J., Ratzke, K., Shaikh, M. Q., Gaukel, V., Moritz, H. U., Schuchmann, H. P., Walzel, P., Drusch, S., & Schwarz, K. (2013). Spray drying behavior and functionality of emulsions with β-lactoglobulin/pectin interfacial complexes. Food Hydrocolloids, 31(1), 438-445. http://dx.doi.org/10.1016/j.foodhyd.2012.11.037.

10. Mattison, K. W., Brittain, I. J., & Dubin, P. L. (1995). Protein-polyelectrolyte phase boundaries. Biotechnology Progress, 11(1), 632-637. http://dx.doi.org/10.1021/bp00036a005.

11. Mattison, K. W., Wang, Y., Grymonpré, K., & Dubin, P. L. (1999). Micro and macro-phase behaviour in protein-polyelectrolytes systems. Macromolecular Symposia, 140(1), 53-76. http://dx.doi.org/10.1002/masy.19991400107.

12. Marfil, P. H. M. (2014). Microencapsulação de óleo de palma por coacervação complexa em matrizes de gelatina/goma arábica e gelatina/alginato (Doctoral thesis). Universidade Estadual Paulista “Julio de Mesquita Filho”, São José do Rio Preto.

13. Cano-Chauca, M., Stringheta, P. C., Ramos, A. M., & Cal-Vidal, J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies, 6(1), 420-428. http://dx.doi.org/10.1016/j.ifset.2005.05.003.

14. Perrechil, F. A., & Cunha, R. L. (2013). Stabilization of multilayered emulsions by sodium caseinate and κ-carrageenan. Food Hydrocolloids, 30(1), 606-613. http://dx.doi.org/10.1016/j.foodhyd.2012.08.006.

15. Antonov, Y. A., & Zubova, O. M. (2001). Phase state of aqueous gelatin–polysaccharide (1)–polysaccharide (2) systems. International Journal of Biological Macromolecules, 29(2), 67-71. PMid:11518577. http://dx.doi.org/10.1016/S0141-8130(01)00140-4.

16. Renkema, J. M. S., Gruppen, H., & Van Vliet, T. (2002). Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. Journal of Agricultural and Food Chemistry, 50(21), 6064-6071. PMid:12358481. http://dx.doi.org/10.1021/jf020061b.

17. Malhotra, A., & Coupland, J. N. (2004). The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocolloids, 18(1), 101-108. http://dx.doi.org/10.1016/S0268-005X(03)00047-X.

18. Rocha, G. O., Farias, M. G., Carvalho, C. W. P., Ascheri, J. L. R., & Galdeano, M. C. (2014). Filmes compostos biodegradáveis a base de amido de mandioca e proteína de soja. Polímeros: Ciência e Tecnologia, 24(5), 587-595. http://dx.doi.org/10.1590/0104-1428.1355.

19. Harnsilawat, T., Pongsawatmanit, R., & McClements, D. J. (2006). Characterization of β-lactoglobulin–sodium alginate interactions in aqueous solutions: A calorimetry, light scattering, electrophoretic mobility and solubility study. Food Hydrocolloids, 20(1), 577-585. http://dx.doi.org/10.1016/j.foodhyd.2005.05.005.

20. Jasentuliyana, N., Toma, R. B., Klavons, J. A., & Medora, N. (1998). Beverage cloud stability with isolated soy protein. Journal of the Science of Food and Agriculture, 78(1), 389-394. http://dx.doi.org/10.1002/(SICI)1097-0010(199811)78:3<389::AID-JSFA130>3.0.CO;2-Z.

21. Albano, K. M., & Telis, V. R. N. (2015). Rheological investigation of ultrasound effect on interactions between soy protein isolate and pectin. In Proceedings of the VII Brazilian Conference on Rheology (pp. 22-25). Curitiba: Universidade Tecnológica Federal do Paraná.

5b7b00740e88254140896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections