Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2376
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Simulation of temperature effect on the structure control of polystyrene obtained by atom-transfer radical polymerization

Vieira, Roniérik Pioli; Lona, Liliane Maria Ferrareso

Downloads: 1
Views: 1117

Abstract

This paper uses a new kinetic modeling and simulations to analyse the effect of temperature on the polystyrene properties obtained by atom-transfer radical polymerization (ATRP). Differently from what has been traditionaly published in ATRP modeling works, it was considered “break” reactions in the mechanism aiming to reproduce the process at high temperatures. Results suggest that there is an upper limit temperature (130 °C), above which the polymer architecture loses the control. In addition, for the system considered in this work, the optimum operating temperature was 100 °C, because at this temperature polymer with very low polydispersity index is obtained, at considerable fast polymerization rate. Therefore, this present paper provides not only a tool to study ATRP processes by simulations, but also a tool for analysis and optimization, being a basis for future works dealing with this monomer and process.

Keywords

ATRP, kinetic modeling, simulation, radical polymerization.

References

1. Zhao, M., Zhang, H., Ma, F., Zhang, Y., Guo, X., & Zhang, H. (2013). Efficient synthesis of monodisperse, highly crosslinked, and “living” functional polymer microspheres by the ambient temperature iniferter-induced “living” radical precipitation polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 51(9), 1983-1998. http://dx.doi.org/10.1002/pola.26579.

2. Lessard, B. H., & Marić, M. (2013). Water-soluble/dispersible carbazole-containing random and block copolymers by nitroxide-mediated radical polymerisation. Canadian Journal of Chemical Engineering, 91(4), 618-629. http://dx.doi.org/10.1002/cjce.21676.

3. Porras, C. T., D’Hooge, D. R., Van Steenberge, P. H. M., Reyniers, M. F., & Marin, G. B. (2013). A theoretical exploration of the potential of ICAR ATRP for one- and two-pot synthesis of well-defined diblock copolymers. Macromolecular Reaction Engineering, 7(7), 311-326. http://dx.doi.org/10.1002/mren.201200085.

4. Zhou, Y. N., Li, J. J., & Luo, Z. H. (2012). Synthesis of gradient copolymers with simultaneously tailor-made chain composition distribution and glass transition temperature by semibatch ATRP: from modeling to application. Journal of Polymer Science. Part A, Polymer Chemistry, 50(15), 3052-3066. http://dx.doi.org/10.1002/pola.26091.

5. Goldmann, A. S., Glassner, M., Inglis, A. J., & Barner-Kowollik, C. (2013). Post-functionalization of polymers via orthogonal ligation chemistry. Macromolecular Rapid Communications, 34(10), 810-849. PMid:23625725. http://dx.doi.org/10.1002/marc.201300017.

6. Salian, V. D., & Byrne, M. E. (2013). Living radical polymerization and molecular imprinting: improving polymer morphology in imprinted polymers. Macromolecular Materials and Engineering, 298(4), 379-390. http://dx.doi.org/10.1002/mame.201200191.

7. Yamago, S., Yamada, T., Togai, M., Ukai, Y., Kayahara, E., & Pan, N. (2009). Synthesis of structurally well-defined telechelic polymers by organostibine-mediated living radical polymerization: in situ generation of functionalized chain-transfer agents and selective omega-end-group transformations. Chemistry, 15(4), 1018-1029. PMid:19086048. http://dx.doi.org/10.1002/chem.200801754.

8. Hardy, C. G., Ren, L., Zhang, J., & Tang, C. (2012). Side-chain metallocene-containing polymers by living and controlled polymerizations. Israel Journal of Chemistry, 52(3-4), 230-245. http://dx.doi.org/10.1002/ijch.201100110.

9. Badri, A., Whittaker, M. R., & Zetterlund, P. B. (2012). Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. Journal of Polymer Science. Part A, Polymer Chemistry, 50(15), 2981-2992. http://dx.doi.org/10.1002/pola.26094.

10. Matyjaszewski, K. (2012). Atom transfer radical polymerization: from mechanisms to applications. Israel Journal of Chemistry, 52(3-4), 206-220. http://dx.doi.org/10.1002/ijch.201100101.

11. Matyjaszewski, K. (2012). Atom Transfer Radical Polymerization (ATRP): current status and future perspectives. Macromolecules, 45(10), 4015-4039. http://dx.doi.org/10.1021/ma3001719.

12. Vieira, R. P., & Lona, L. M. F. (2016). Optimization of reaction conditions in functionalized polystyrene synthesis via ATRP by simulations and factorial design. Polymer Bulletin, 73(7), 1795-1810. http://dx.doi.org/10.1007/s00289-015-1577-z.

13. Zhu, S. (1999). Modeling of molecular weight development in atom transfer radical polymerization. Macromolecular Theory and Simulations, 8(1), 29-37. http://dx.doi.org/10.1002/(SICI)1521-3919(19990101)8:1<29::AID-MATS29>3.0.CO;2-7.

14. D’hooge, D. R., Reyniers, M. F., & Marin, G. B. (2009). Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering, 3(4), 185-209. http://dx.doi.org/10.1002/mren.200800051.

15. Shipp, D. A., & Matyjaszewski, K. (1999). Kinetic analysis of controlled/“living” radical polymerizations by simulations. 1. The importance of diffusion-controlled reactions. Macromolecules, 32(9), 2948-2955. http://dx.doi.org/10.1021/ma9819135.

16. Al-harthi, M., Cheng, L. S., Soares, J. B. P., & Simon, L. C. (2007). Atom-transfer radical polymerization of styrene with bifunctional and monofunctional initiators: experimental and mathematical modeling results. Journal of Polymer Science, 45, 2212-2224. http://dx.doi.org/10.1002/pola.

17. Bentein, L., D’hooge, D. R., Reyniers, M. F., & Marin, G. B. (2011). Kinetic modeling as a tool to understand and improve the nitroxide mediated polymerization of styrene. Macromolecular Theory and Simulations, 20(4), 238-265. http://dx.doi.org/10.1002/mats.201000081.

18. Ray, W. H. (1972). On the mathematical modeling of polymerization reactors. Journal of Macromolecular Science, Part C: Polymer Reviews, 8(1), 1-56. http://dx.doi.org/10.1080/15321797208068168.

19. Vieira, R. P., Ossig, A., Perez, J. M., Grassi, V. G., Petzhold, C. L., Costa, J. M., & Lona, L. M. F. (2013). Simulation of the equilibrium constant effect on the kinetics and average properties of polystyrene obtained by ATRP. Journal of the Brazilian Chemical Society, 24(12), 2008-2014. http://dx.doi.org/10.5935/0103-5053.20130251.

20. Vieira, R. P., Ossig, A., Perez, J. M., Grassi, V. G., Petzhold, C. L., Peres, A. C., Costa, J. M., & Lona, L. M. F. (2015). Styrene ATRP using the new initiator 2,2,2-tribromoethanol: experimental and simulation approach. Polymer Engineering and Science, 55(10), 2270-2276. http://dx.doi.org/10.1002/pen.24113.

21. Vieira, R. P., & Lona, L. M. F. (2016). Kinetic modeling of atom-transfer radical polymerization: inclusion of break reactions in the mechanism. Polymer Bulletin, 73(8), 2105-2119. http://dx.doi.org/10.1007/s00289-015-1596-9.

22. Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. Scientific Computing, 1, 55-64. Retrieved in 9 November 2015, from https://computation.llnl.gov/casc/nsde/pubs/u88007.pdf

23. Zapata-González, I., Saldívar-Guerra, E., Flores-Tlacuahuac, A., Vivaldo-Lima, E., & Ortiz-Cisneros, J. (2012). Efficient numerical integration of stiff differential equations in polymerisation reaction engineering: computational aspects and applications. Canadian Journal of Chemical Engineering, 90(4), 804-823. http://dx.doi.org/10.1002/cjce.21656.

24. Vieira, R. P., Mokochinski, J. B., & Sawaya, A. C. H. F. (2015). Mathematical modeling of the ascorbic acid thermal degradation in orange juice during industrial pasteurizations. Journal of Food Process Engineering, n/a. http://dx.doi.org/10.1111/jfpe.12260.

25. Fu, Y., Mirzaei, A., Cunningham, M. F., & Hutchinson, R. A. (2017). Atom-transfer radical batch and semibatch polymerization of styrene. Macromolecular Reaction Engineering, 1(4), 425-439. http://dx.doi.org/10.1002/mren.200700010.

26. Belincanta-Ximenes, J., Mesa, P. V. R., Lona, L. M. F., Vivaldo-Lima, E., McManus, N. T., & Penlidis, A. (2007). Simulation of styrene polymerization by monomolecular and bimolecular nitroxide-mediated radical processes over a range of reaction conditions. Macromolecular Theory and Simulations, 16(2), 194-208. http://dx.doi.org/10.1002/mats.200600063.

27. Seeliger, F., & Matyjaszewski, K. (2009). Temperature effect on activation rate constants in ATRP: new mechanistic insights into the activation process. Macromolecules, 42(16), 6050-6055. http://dx.doi.org/10.1021/ma9010507.

28. Matyjaszewski, K., Paik, H., Zhou, P., & Diamanti, S. J. (2001). Determination of activation and deactivation rate constants of model compounds in atom transfer radical polymerization 1. Macromolecules, 34(15), 5125-5131. http://dx.doi.org/10.1021/ma010185+.

29. Hui, A. W., & Hamielec, A. E. (1972). Thermal polymerization of styrene at high conversions and temperatures. an experimental study. Journal of Applied Polymer Science, 16(3), 749-769. http://dx.doi.org/10.1002/app.1972.070160319.

30. Fischer, H., & Paul, H. (1987). Rate constants for some prototype radical reactions in liquids by kinetic electron spin resonance. Accounts of Chemical Research, 20(5), 200-206. http://dx.doi.org/10.1021/ar00137a007.
588371db7f8c9d0a0c8b4abd polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections