Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.2282
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Layered double hydroxides as fillers in poly(l-lactide) nanocomposites, obtained by in situ bulk polymerization

Nogueira, Telma; Gonçalves, Núria; Botan, Rodrigo; Wypych, Fernando; Lona, Liliane

Downloads: 0
Views: 953

Abstract

In this study in situ bulk polymerization of L-lactide filled with layered double hydroxides (LDH) was investigated. Four different LDHs intercalated with two different organic anions (salicylate and sebacate) were synthesized and characterized. After characterization, these synthetic layered compounds were used as fillers in poly(L-lactide) (PLLA) nanocomposites with two different fillers’s loadings (1 wt% and 2 wt%). PLLA and PLLA nanocomposites were evaluated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet and visible spectroscopy, thermogravimetric analysis (TGA), dynamical mechanical analysis (DMA), flexural testing and differential scanning calorimetry (DSC). The results demonstrated that, compared to PLLA, the nanocomposite containing 1 wt% of Zn/Al salicylate transmitted less UVA and UVB light, while keeping a similar transparency in the visible region. Thermogravimetric analysis revealed that the nanocomposite with 1 wt% of Zn/Al salicylate exhibited the highest thermal stability. In general the flexural and dynamical mechanical properties were reduced in compassion to neat PLLA. DSC results, demonstrated that, compared to PLLA, all the nanocomposites exhibited lower glass transition temperature and melting temperature values.

Keywords

layered double hydroxide, polylactide, polymeric nanocomposites, in-situ polymerization

References

1. Katiyar, V., Gerds, N., Koch, C., Risbo, J., Hansen, H., & Plackett, D. (2011). Melt processing of poly(L-lactic acid) in the presence of organomodified anionic or cationic clays. Journal of Applied Polymer Science, 122(1), 112-125. http://dx.doi.org/10.1002/app.33984.

2. Mahboobeh, E., Yunus, W., Hussein, Z., Ahmad, M., & Ibrahim, N. (2010). Flexibility improvement of poly(lactic acid) by stearate-modified layered double hydroxide. Journal of Applied Polymer Science, 118(2), 1077-1083. http://dx.doi.org/10.1002/app.32461.

3. Alexandre, M., & Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 28(1-2), 1-63. http://dx.doi.org/10.1016/S0927-796X(00)00012-7.

4. Wypych, F., Arizaga, G. G. C., & Satyanarayana, K. G. (2008). Synthetic layered materials/ polymer nanocomposites. In S. Thomas & G. Zaikov (Eds.). Polymer nanocomposite research advances (pp. 95-143). New York: Nova Science Publishers.

5. Chiang, M., & Wu, T. (2012). Preparation and characterization of melt processed poly(L-lactide)/layered double hydroxide nanocomposites. Composites. Part B, Engineering, 43(7), 2789-2794. http://dx.doi.org/10.1016/j.compositesb.2012.04.040.

6. Chiang, M., Chu, M., & Wu, T. (2011). Effect of layered double hydroxides on the thermal degradation behavior of biodegradable poly(L-lactide) nanocomposites. Polymer Degradation & Stability, 96(1), 60-66. http://dx.doi.org/10.1016/j.polymdegradstab.2010.11.002.

7. Chiang, M., & Wu, T. (2010). Synthesis and characterization of biodegradable poly(L-lactide)/layered double hydroxide nanocomposites. Composites Science and Technology, 70(1), 110-115. http://dx.doi.org/10.1016/j.compscitech.2009.09.012.

8. Dagnon, K., Ambadapadi, S., Shaito, A., Ogbomo, S., DeLeon, V., Golden, T., Rahimi, M., Nguyen, K., Braterman, P., & D’Souza, N. (2009). Poly(L-lactic acid) nanocomposites with layered double hydroxides functionalized with ibuprofen. Journal of Applied Polymer Science, 113(3), 1905-1915. http://dx.doi.org/10.1002/app.30159.

9. Ha, J., & Xanthos, M. (2010). Novel modifiers for layered double hydroxides and their effects on the properties of polylactic acid composites. Applied Clay Science, 47(3-4), 303-310. http://dx.doi.org/10.1016/j.clay.2009.11.033.

10. Gerds, N., Katiyar, V., Koch, C., Hansen, H., Plackett, D., Larsen, E., & Risbo, J. (2012). Degradation of L-polylactide during melt processing with layered double hydroxides. Polymer Degradation & Stability, 97(10), 2002-2009. http://dx.doi.org/10.1016/j.polymdegradstab.2012.04.014.

11. Wang, D., Leuteritz, A., Wang, Y., Wagenknecht, U., & Heinrich, G. (2010). Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation & Stability, 95(12), 2474-2480. http://dx.doi.org/10.1016/j.polymdegradstab.2010.08.007.

12. Katiyar, V., Gerds, N., Koch, C., Risbo, J., Hansen, H., & Plackett, D. (2010). Poly L-lactide-layered double hydroxide nanocomposites via in situ polymerization of L-lactide. Polymer Degradation & Stability, 95(12), 2563-2573. http://dx.doi.org/10.1016/j.polymdegradstab.2010.07.031.

13. Arizaga, G., Satyanarayana, K., & Wypych, F. (2007). Layered hydroxide salts: synthesis, properties and potential applications. Solid State Ionics, 178(15-18), 1143-1162. http://dx.doi.org/10.1016/j.ssi.2007.04.016.

14. Costa, F., Leuteritz, A., Wagenknecht, U., Jehnichen, D., Haubler, L., & Heinrich, G. (2008). Intercalation of Mg-Al layered double hydroxide by anionic surfactants: preparation and characterization. Applied Clay Science, 38(3-4), 153-164. http://dx.doi.org/10.1016/j.clay.2007.03.006.

15. Meyn, M., Beneke, K., & Lagaly, G. (1990). Anion-exchange reactions of layered double hydroxides. Inorganic Chemistry, 29(26), 5201-5207. http://dx.doi.org/10.1021/ic00351a013.

16. Pang, X., Ma, X., Li, D., & How, W. (2013). Synthesis and characterization of 10-hydroxycamptothecin-sebacate-layered double hydroxide nanocomposites. Solid State Sciences, 16, 71-75. http://dx.doi.org/10.1016/j.solidstatesciences.2012.10.008.

17. Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835-864. http://dx.doi.org/10.1002/mabi.200400043. PMid:15468294.

18. Auras, R., Lim, L., Selke, S. E. M., & Tsuji, H. (2010). Poly(lactic acid) synthesis, structures, properties, processing, and applications. New Jersey: John Wiley & Sons. http://dx.doi.org/10.1002/9780470649848.

19. Chen, H., Chen, J., Shao, L., Yang, J., Huang, T., Zhang, N., & Wang, Y. (2013). Comparative study of poly(L-lactide) nanocomposites with organic montmorillonite and carbon nanotubes. Journal of Polymer Science. Part B, Polymer Physics, 51(3), 183-196. http://dx.doi.org/10.1002/polb.23182.

20. Nogueira, T., Botan, R., Neto, J., Wypych, F., & Lona, L. (2013). Effect of layered double hydroxide, on the mechanical, termal, and fire properties of poly(methyl methacrylate) nanocomposites. Advances in Polymer Technology, 32(S1), E660-E674. http://dx.doi.org/10.1002/adv21309.

21. Cassu, S., & Felisberti, M. (2005). Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas. Quimica Nova, 28(2), 255-263. http://dx.doi.org/10.1590/S0100-40422005000200017.

22. Yan, L., Chouw, N., & Yuan, X. (2012). Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites, 31(6), 425-437. http://dx.doi.org/10.1177/0731684412439494.

23. Oiu, W., Mai, K., & Zeng, H. (2000). Effect of silane-grafted polypropylene on the mechanical properties and crystallization behavior of talc/polypropylene composites. Journal of Applied Polymer Science, 77(13), 2974-2977. http://dx.doi.org/10.1002/1097-4628(20000923)77:13<2974::AID-APP22>3.0.CO;2-R.
588371d67f8c9d0a0c8b4aab polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections