Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220116
Polímeros: Ciência e Tecnologia
Original Article

Mechanical behavior of snake grass fiber with neem gum filler hybrid composite

Arumugam Pachiappan; Senthil Kumar Velukkudi Santhanam

Downloads: 0
Views: 216

Abstract

In this study, the utilization of neem gum powder and snake grass fiber, gathered from snake grass plants is discussed. The fibers are produced in various volume percentages of 5, 10, 15, 20, 25, 30 and 35% and their mechanical characteristics such as tensile strength, flexural strength, impact strength, and critical stress intensity are investigated. The combination of 30% snake grass fiber, 15% neem gum powder and 55% epoxy resin, in terms of volume, contributes towards the attaining of better mechanical properties. The tensile strength, flexural strength, impact strength, and critical stress intensity of this blend are respectively 36.497±0.429 MPa, 65.87±1.85 MPa, 2682.67±1.866 J/m2 and 42.291±2.61 Pa mm-1/2. The mechanical properties improve with the addition of the fiber. However, as more fiber is added, the adhesion at the interface gets reduced. The automotive and aerospace sectors can use this composite material, which enhances the mechanical characteristics for interior applications.

 

 

Keywords

critical stress intensity, flexural strength, hybrid composite, impact strength, neem gum powder filler

References

1 Ilyas, R. A., Sapuan, S. M., Asyraf, M. R. M., Atikah, M. S. N., Ibrahim, R., Dele-Afolabi, T. T., & Hazrol, M. D. (2020). Introduction to biofiller reinforced degradable polymer composites. In R. Jumaidin, S. M. Sapuan & H. Ismail (Eds.), Biofiller-reinforced biodegradable polymer composites (pp. 1-23). Boca Raton: CRC Press. http://dx.doi.org/10.1201/9780429322112-1.

2 Sari, N. H., Pruncu, C. I., Sapuan, S. M., Ilyas, R. A., Catur, A. D., Suteja, S., Sutaryono, Y. A., & Pullen, G. (2020). The effect of water immersion and fiber content on properties of corn husk fibers reinforced thermoset polyester composite. Polymer Testing, 91, 106751. http://dx.doi.org/10.1016/j.polymertesting.2020.106751.

3 Sapuan, S. M., Aulia, H. S., Ilyas, R. A., Atiqah, A., Dele-Afolabi, T. T., Nurazzi, M. N., Supian, A. B. M., & Atikah, M. S. N. (2020). Mechanical properties of longitudinal basalt/woven-glass-fiber-reinforced unsaturated polyester-resin hybrid composites. Polymers, 12(10), 2211. http://dx.doi.org/10.3390/polym12102211. PMid:32992450.

4 Ilyas, R. A., & Sapuan, S. M. (2019). The preparation methods and processing of natural fibre bio-polymer composites. Current Organic Synthesis, 16(8), 1068-1070. http://dx.doi.org/10.2174/157017941608200120105616. PMid:31984916.

5 Ilyas, R. A., & Sapuan, S. M. (2020). Biopolymers and biocomposites: chemistry and technology. Current Analytical Chemistry, 16(5), 500-503. http://dx.doi.org/10.2174/157341101605200603095311.

6 Asyraf, M. R. M., Ishak, M. R., Sapuan, S. M., Yidris, N., Ilyas, R. A., Rafidah, M., & Razman, M. R. (2020). Potential application of green composites for cross arm component in transmission tower: a brief review. International Journal of Polymer Science, 2020, 8878300. http://dx.doi.org/10.1155/2020/8878300.

7 Atikah, M. S. N., Ilyas, R. A., Sapuan, S. M., Ishak, M. R., Zainudin, E. S., Ibrahim, R., Atiqah, A., Ansari, M. N. M., & Jumaidin, R. (2019). Degradation and physical properties of sugar palm starch/sugar palm nanofibrillated cellulose bionanocomposite. Polimery, 64(10), 680-689. http://dx.doi.org/10.14314/polimery.2019.10.5.

8 Zhao, K., Xue, S., Zhang, P., Tian, Y., & Li, P. (2019). Application of natural plant fibers in cement-based composites and the influence on mechanical properties and mass transport. Materials, 12(21), 3498. http://dx.doi.org/10.3390/ma12213498. PMid:31731435.

9 Jumaidin, R., Khiruddin, M. A. A., Saidi, Z. A. S., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fiber on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746-755. http://dx.doi.org/10.1016/j.ijbiomac.2019.11.011. PMid:31730973.

10 Viel, Q., Esposito, A., Saiter, J.-M., Santulli, C., & Turner, J. (2018). Interfacial characterization by pull-out test of bamboo fibers embedded in poly(lactic acid). Fibers, 6(1), 7. http://dx.doi.org/10.3390/fib6010007.

11 Sepe, R., Bollino, F., Boccarusso, L., & Caputo, F. (2018). Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Composites. Part B, Engineering, 133, 210-217. http://dx.doi.org/10.1016/j.compositesb.2017.09.030.

12 Balasubramanian, K., Rajeswari, N., & Vishvak, R. (2020). Influence of sequential positioning of fiber mats in enhancing the properties of natural fiber mat hybrid composite. Materials Today: Proceedings, 28(Part 2), 1144-1148. http://dx.doi.org/10.1016/j.matpr.2020.01.097.

13 Arulmurugan, M., Selvakumar, A. S., Prabu, K., & Rajamurugan, G. (2020). Effect of barium sulfate on mechanical, DMA and thermal behavior of woven aloe vera/flax hybridcomposites. Bulletin of Materials Science, 43(1), 58. http://dx.doi.org/10.1007/s12034-019-2018-7.

14 Al-Hajaj, Z., Sy, B. L., Bougherara, H., & Zdero, R. (2019). Impact properties of a new hybrid composite material made from woven carbon fibres plus flax fibres in an epoxy matrix. Composite Structures, 208, 346-356. http://dx.doi.org/10.1016/j.compstruct.2018.10.033.

15 Manap, N., Jumahat, A., Rahman, N. A., & Rahman, N. A. A. (2020). NaOH treated Kenaf/Glass hybrid composite: the effects of nanosilica on longitudinal and transverse tensile properties. Journal of Physics: Conference Series, 1432(1), 012046. http://dx.doi.org/10.1088/1742-6596/1432/1/012046.

16 Sanjay, M. R., Arpitha, G. R., Senthamaraikannan, P., Kathiresan, M., Saibalaji, M. A., & Yogesha, B. (2019). The hybrid effect of jute/kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, interlaminar strength, and failure surface characterization. Journal of Natural Fibers, 16(4), 600-612. http://dx.doi.org/10.1080/15440478.2018.1431828.

17 Zin, M. H., Abdan, K., & Norizan, M. N. (2019). The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. In M. Jawaid, M. Thariq & N. Saba (Eds.), Structural health monitoring of biocomposites, fibre-reinforced composites and hybrid composites (pp. 1-17). Amsterdam: Elsevier. http://dx.doi.org/10.1016/B978-0-08-102291-7.00001-0.

18 Richard, B. D., Wahi, A., Nani, R., Lling, E., Osman, S., & Ali, D. S. H. (2019). Effect of fiber loading on the flexural and tensile strength of oil palm frond fiber reinforced polymer composite. International Journal of Integrated Engineering, 11(7), 122-128. http://dx.doi.org/10.30880/ijie.2019.11.07.016.

19 Baihaqi, N. M. Z. N., Khalina, A., Nurazzi, N. M., Aisyah, H. A., Sapuan, S. M., & Ilyas, R. A. (2021). Effect of fiber content and their hybridization on bending and torsional strength of hybrid epoxy composites reinforced with carbon and sugar palm fibers. Polimery, 66(1), 36-43. http://dx.doi.org/10.14314/polimery.2021.1.5.

20 Karthick, R., Adithya, K., Hariharaprasath, C., & Abhishek, V. (2018). Evaluation of mechanical behavior of banana fiber reinforced hybrid epoxy composites. Materials Today: Proceedings, 5(5), 12814-12820. http://dx.doi.org/10.1016/j.matpr.2018.02.265.

21 Doddi, P. R. V., Chanamala, R., & Dora, S. P. (2020). Effect of fiber orientation on dynamic mechanical properties of PALF hybridized with basalt reinforced epoxy composites. Materials Research Express, 7(1), 015329. http://dx.doi.org/10.1088/2053-1591/ab6771.

22 Wang, H., Memon, H., Hassan, E. A. M., Miah, M. S., & Ali, M. A. (2019). Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials, 12(8), 1226. http://dx.doi.org/10.3390/ma12081226. PMid:30991643.

23 Kalagi, G. R., Patil, R., & Nayak, N. (2018). Experimental study on mechanical properties of natural fiber reinforced polymer composite materials for wind turbine blades. Materials Today: Proceedings, 5(1), 2588-2596. http://dx.doi.org/10.1016/j.matpr.2017.11.043.

24 Nurazzi, N. M., Khalina, A., Sapuan, S. M., & Rahmah, M. (2018). Development of sugar palm yarn/glass fiber reinforced unsaturated polyester hybrid composites. Materials Research Express, 5(4), 045308. http://dx.doi.org/10.1088/2053-1591/aabc27.

25 Nurazzi, N. M., Khalina, A., Chandrasekar, M., Aisyah, H. A., Rafiqah, S. A., Ilyas, R. A., & Hanafee, Z. M. (2020). Effect of fiber orientation and fiber loading on the mechanical and thermal properties of sugar palm yarn fiber reinforced unsaturated polyester resin composites. Polimery, 65(2), 115-124. http://dx.doi.org/10.14314/polimery.2020.2.5.

26 Ayu, R. S., Khalina, A., Harmaen, A. S., Zaman, K., Isma, T., Liu, Q., Ilyas, R. A., & Lee, C. H. (2020). Characterization study of Empty Fruit Bunch (EFB) fibers reinforcementin Poly(Butylene) Succinate (PBS)/starch/glycerol composite sheet. Polymers, 12(7), 1571. http://dx.doi.org/10.3390/polym12071571. PMid:32679865.

27 Balla, V. K., Kate, K. H., Satyavolu, J., Singh, P., & Tadimeti, J. G. D. (2019). Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Composites. Part B, Engineering, 174, 106956. http://dx.doi.org/10.1016/j.compositesb.2019.106956.

28 Sathish, S., Prabhu, L., Gokulkumar, S., Karthi, N., Balaji, D., & Vigneshkumar, N. (2021). Extraction, treatment and applications of natural fibers for bio-composites - a critical review. International Polymer Processing, 36(2), 114-130. http://dx.doi.org/10.1515/ipp-2020-4004.

29 Sathish, S., Kumaresan, K., Prabhu, L., & Vigneshkumar, N. (2017). Experimental investigation on volume fraction of mechanical and physical properties of flax and bamboo fibers reinforced hybrid epoxy composites. Polymers & Polymer Composites, 25(3), 229-236. http://dx.doi.org/10.1177/096739111702500309.

30 Rangaraj, R., Sathish, S., Mansadevi, T. L. D., Supriya, R., Surakasi, R., Aravindh, M., Karthick, A., Mohanavel, V., Ravichandran, M., Muhibbullah, M., & Osman, M. (2022). Investigation of weight fraction and alkaline treatment on Catechu Linnaeus/Hibiscus cannabinus/Sansevieria Ehrenbergii plant fibers-reinforced epoxy hybrid composites. Advances in Materials Science and Engineering, 2022, 4940531. http://dx.doi.org/10.1155/2022/4940531.

31 Jenish, I., Sahayaraj, A. F., Appadurai, M., Raj, E. F. I., Suresh, P., Raja, T., Salmen, S. H., Alfarraj, S., & Manikandan, V. (2021). Fabrication and experimental analysis of treated snake grass fiber reinforced with polyester composite. Advances in Materials Science and Engineering, 2021, 6078155. http://dx.doi.org/10.1155/2021/6078155.

32 Jenish, I., Sahayaraj, A. F., Suresh, V., Mani raj, J., Appadurai, M., Raj, E. F. I., Nasif, O., Alfarraj, S., & Kumaravel, A. K. (2022). Analysis of the hybrid of mudar/snake grass fiber-reinforced epoxy with nano-silica filler composite for structural application. Advances in Materials Science and Engineering, 2022, 7805146. http://dx.doi.org/10.1155/2022/7805146.

33 Nguyen, T. A., & Nguyen, T. H. (2022). Study on mechanical properties of banana fiber-reinforced materials poly (lactic acid) composites. International Journal of Chemical Engineering, 2022, 8485038. http://dx.doi.org/10.1155/2022/8485038.

34 Hariprasad, P., Kannan, M., Ramesh, C., Sahayaraj, A. F., Jenish, I., Hussain, F., Khedher, N. B., Boudjemline, A., & Suresh, V. (2022). Mechanical and morphological studies of Sansevieria trifasciata fiber-reinforced polyester composites with the addition of SiO2 and B4C. Advances in Materials Science and Engineering, 2022, 1634670. http://dx.doi.org/10.1155/2022/1634670.

35 Ganesamoorthy, R., Reddy, R. M., Raja, T., Panda, P. K., Dhoria, S. H., Nasif, O., Alfarraj, S., Manikandan, V., & Jenish, I. (2021). Studies on mechanical properties of Kevlar/Napier grass fibers reinforced with polymer matrix hybrid composite. Advances in Materials Science and Engineering, 2021, 6907631. http://dx.doi.org/10.1155/2021/6907631.

36 Kumar, R. P., Muthukrishnan, M., & Sahayaraj, A. F. (2022). Experimental investigation on jute/snake grass/kenaf fiber reinforced novel hybrid composites with annona reticulata seed filler addition. Materials Research Express, 9(9), 095304. http://dx.doi.org/10.1088/2053-1591/ac92ca.

37 Sahoo, M. R., Gopinathan, R., Kumar, K. V. P., Rani, J. J. A., Pradhan, R., & Parida, L. (2022). Study on the influence of stacking pattern on mechanical behaviour of banana/snake grass fibers hybrid epoxy composite. Materials Today: Proceedings, 69(Part 3), 1164-1168. http://dx.doi.org/10.1016/j.matpr.2022.08.185.

38 Manickaraj, J., Ramamoorthi, R., Sathish, S., & Makeshkumar, M. (2022). Effect of hybridization of novel African teff and snake grass fibers reinforced epoxy composites with bio castor seed shell filler: experimental investigation. Polymers & Polymer Composites, 30, 09673911221102288. http://dx.doi.org/10.1177/09673911221102288.

39 Sathishkumar, T. P. (2016). Development of snake grass fiber-reinforced polymer composite chair. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(1), 273-281. http://dx.doi.org/10.1177/1464420715569291.

40 Bhaskar, K. B., Santhanam, V., & Devaraju, A. (2020). Dielectric strength analysis of acacia nilotica with chemically treated sisal fiber reinforced polyester composite. Digest Journal of Nanomaterials and Biostructures, 15(1), 107-113. http://dx.doi.org/10.15251/DJNB.2020.151.107.

41 Vimalanathan, P., Venkateshwaran, N., & Santhanam, V. (2016). Mechanical, dynamic mechanical, and thermal analysis of Shorea robusta-dispersed polyester composite. International Journal of Polymer Analysis and Characterization, 21(4), 314-326. http://dx.doi.org/10.1080/1023666X.2016.1155818.

42 Palanikumar, V., Narayanan, V., & Vajjiram, S. (2018). Experimental investigation of mechanical and viscoelastic properties of Acacia Nilotica filler blended polymer composite. Polymer Composites, 39(7), 2535-2546. http://dx.doi.org/10.1002/pc.24238.
 

657b0da3a953956191769fa4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections