Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.20220066
Polímeros: Ciência e Tecnologia
Original Article

In-line rheo-optical characterization of PET hydrolysis and chain extension during extrusion

Luciana Assumpção Bicalho; Sebastião Vicente Canevarolo Junior

Downloads: 3
Views: 292

Abstract

The thermo-mechanical degradation of PET during extrusion was studied in the transient state. Active agents, water, causing hydrolysis by chain scission and pyromellitic dianhydride PMDA, causing chain extension, were added to the extrusion flow as pulses. They change the PET molecular weight, affecting its the melt flow elasticity, which was followed in-line by a rheo-optical detector set in an instrumented slit-die, measuring synchronously, pressure drop and flow birefringence ( Δ n 12 ). The effect of the extrusion shearing level, set by 90º kneading blocks with different lengths, was also quantified. The results, as of residence time distribution curves, show the degree of thermo-mechanical degradation as hydrolysis and chain extension for each pulse type and concentration. Thus, assuming collinearity and full birefringence orientation along the melt flow the first normal stress difference N 1 can be monitored in-line.

 

 

Keywords

chain extension, hydrolysis, in-line rheo-optical characterization, polyethylene terephthalate, twin-screw extruder

References

1 Awaja, F., & Pavel, D. (2005). Recycling of PET. European Polymer Journal, 41(7), 1453-1477. http://dx.doi.org/10.1016/j.eurpolymj.2005.02.005.

2 Scheirs, J. (2004). Additives for the modification of poly(ethylene terephthalate) to produce engineering-grade polymers. In J. Scheirs, & T. Long (Eds.), Modern polyesters: chemistry and technology of polyesters and copolyesters (pp. 495-540). England: John Wiley & Sons, Ltd. http://dx.doi.org/10.1002/0470090685.ch14.

3 Campanelli, J. R., Kamal, M. R., & Cooper, D. G. (1993). A kinetic study of the hydrolytic degradation of polyethylene terephthalate at high temperatures. Journal of Applied Polymer Science, 48(3), 443-451. http://dx.doi.org/10.1002/app.1993.070480309.

4 Kao, C.-Y., Wan, B.-Z., & Cheng, W.-H. (1998). Kinetics of hydrolytic depolymerization of melt poly (ethylene terephthalate). Industrial & Engineering Chemistry Research, 37(4), 1228-1234. http://dx.doi.org/10.1021/ie970543q.

5 Pirzadeh, E., Zadhoush, A., & Haghighat, M. (2007). Hydrolytic and thermal degradation of PET fibers and PET granule: the effects of crystallization, temperature, and humidity. Journal of Applied Polymer Science, 106(3), 1544-1549. http://dx.doi.org/10.1002/app.26788.

6 Hosseini, S. S., Taheri, S., Zadhoush, A., & Mehrabani‐Zeinabad, A. (2007). Hydrolytic degradation of poly (ethylene terephthalate). Journal of Applied Polymer Science, 103(4), 2304-2309. http://dx.doi.org/10.1002/app.24142.

7 Awaja, F., Daver, F., & Kosior, E. (2004). Recycled poly (ethylene terephthalate) chain extension by a reactive extrusion process. Polymer Engineering and Science, 44(8), 1579-1587. http://dx.doi.org/10.1002/pen.20155.

8 Incarnato, L., Scarfato, P., Di Maio, L., & Acierno, D. (2000). Structure and rheology of recycled PET modified by reactive extrusion. Polymer, 41(18), 6825-6831. http://dx.doi.org/10.1016/S0032-3861(00)00032-X.

9 Covas, J. A., Nóbrega, J. M., & Maia, J. M. (2000). Rheological measurements along an extruder with an on-line capillary rheometer. Polymer Testing, 19(2), 165-176. http://dx.doi.org/10.1016/S0142-9418(98)00086-5.

10 Silva, J., Santos, A. C., & Canevarolo, S. V. (2015). In-line monitoring flow in an extruder die by rheo-optics. Polymer Testing, 41, 63-72. http://dx.doi.org/10.1016/j.polymertesting.2014.10.007.

11 Muller, R., & Vergnes, B. (1996). Validity of the stress optical law and application of birefringence to polymer complex flows. Rheology Series, 5, 257-284. http://dx.doi.org/10.1016/S0169-3107(96)80010-4.

12 Janeschitz-Kriegl, H. (1969). Flow birefringence of elastico-viscous polymer systems. In: F. der Hochpolymeren-Forschung. Advances in polymer science (pp. 170-318). Germany: Springer Berlin Heidelberg. http://dx.doi.org/10.1007/BFb0051073.

13 Soares, K., Santos, A. M. C., & Canevarolo, S. V. (2011). In-line rheo-polarimetry: a method to measure in real time the flow birefringence during polymer extrusion. Polymer Testing, 30(8), 848-855. http://dx.doi.org/10.1016/j.polymertesting.2011.08.007.

14 Wódkiewicz, K. (1995). Classical and quantum Malus laws. Physical Review. A, Atomic, Molecular, and Optical Physics, 51(4), 2785-2788. http://dx.doi.org/10.1103/PhysRevA.51.2785. PMid:9911909.

15 Billmeyer, F. W., Jr, & Stockmayer, W. H. (1950). Method of measuring molecular weight distribution. Journal of Polymer Science, 5(1), 121-137. http://dx.doi.org/10.1002/pol.1950.120050106.

16 Van Krevelen, D. W., & Te Nijenhuis, K. (2009). Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Netherlands: Elsevier. http://dx.doi.org/10.1016/B978-0-08-054819-7.00001-7.

17 Odian, G. (2004). Principles of polymerization. USA: John Wiley & Sons, Inc.. http://dx.doi.org/10.1002/047147875X.

18 Qian, B., & Gogos, C. G. (2000). The importance of plastic energy dissipation (PED) to the heating and melting of polymer particulates in intermeshing co‐rotating twin‐screw extruders. Advances in Polymer Technology, 19(4), 287-299. http://dx.doi.org/10.1002/1098-2329(200024)19:4<287::AID-ADV5>3.0.CO;2-K.
 

64f7235fa953955334265872 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections