Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1818
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Immobilization of myoglobin in sodium alginate composite membranes

Figueiredo, Katia Cecília de Souza; Ven, Wilbert van de; Wessling, Matthias; Alves, Tito Lívio Moitinho; Borges, Cristiano Piacsek

Downloads: 0
Views: 982

Abstract

The immobilization of myoglobin in sodium alginate films was investigated with the aim of evaluating the protein stability in an ionic polymeric matrix. Myoglobin was chosen due to the resemblance to each hemoglobin tetramer. Sodium alginate, being a natural polysaccharide, was selected as the polymeric matrix because of its chemical structure and film-forming ability. To improve the mechanical resistance of sodium alginate films, the polymer was deposited over the surface of a cellulose acetate support by means of ultrafiltration. The ionic crosslink of sodium alginate was investigated by calcium ions. Composite membrane characterization comprised water swelling tests, water flux, SEM images and UV-visible spectroscopy. The electrostatic interaction between the protein and the polysaccharide did not damage the UV-visible pattern of native myoglobin. A good affinity between sodium alginate and cellulose acetate was observed. The top layer of the dense composite membrane successfully immobilized Myoglobin, retaining the native UV-visible pattern for two months.

Keywords

myoglobin, sodium alginate, immobilization, composite membrane, cellulose acetate.

References

1. Baker, R. W. (2004). Membrane technology and applications. London: John Wiley.

2. Baker, R. W. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41(6), 1393-1411. http://dx.doi.org/10.1021/ie0108088.

3. Figoli, A., Sager, W. F. C., & Mulder, M. H. V. (2001). Facilitated oxygen transport in liquid membranes: review and new concepts. Journal of Membrane Science, 181(1), 97-110. http://dx.doi.org/10.1016/S0376-7388(00)00508-1.

4. Shentu, B., & Nishide, H. (2003). Facilitated oxygen transport membranes of picket-fence cobaltporphyrin complexed with various polymer matrixes. Industrial & Engineering Chemistry Research, 42(24), 5954-5958. http://dx.doi.org/10.1021/ie020770e.

5. Suzuki, T., Yasuda, H., Nishide, H., Chen, X. S., & Tsuchida, E. (1996). Electrochemical measurement of facilitated oxygen transport through a polymer membrane containing cobaltporphyrin as a fixed carrier. Journal of Membrane Science, 112(2), 155-160. http://dx.doi.org/10.1016/0376-7388(95)00291-X.

6. Nishide, H., Tsukahara, Y., & Tsuchida, E. (1998). Highly selective oxygen permeation through a poly(vinylidene dichloride)-cobalt porphyrin membrane: hopping transport of oxygen via the fixed cobalt porphyrin carrier. The Journal of Physical Chemistry B, 102(44), 8766-8770. http://dx.doi.org/10.1021/jp9816317.

7. Sugawara, Y., Matsuoka, A., Kaino, A., & Shikama, K. (1995). Role of globin moiety in the autoxidation reaction of oxymyoglobin: effect of 8 M urea. Biophysical, 69(2), 583-592. http://dx.doi.org/10.1016/S0006-3495(95)79932-5. PMid:8527673.

8. Ferraz, H. C. (2003). Membranas de transporte facilitado para separação de oxigênio utilizando biotransportadores (Doctor Thesis). Universidade Federal do Rio de Janeiro, Rio de Janeiro.

9. Draget, K. I., Smidsrod, O., & Skjak-Braek, G. (2005). Polysaccharides in the food industry: properties, production, and patents. Weinhein: John Wiley.

10. van de Ven, W. J. C., van’t Sant, K., Punt, I. G. M., Zwijnenburg, A., Kemperman, A. J. B., van der Meer, W. G. J., & Wessling, M. (2008). Hollow fiber dead-end ultrafiltration: Influence of ionic environment on filtration of alginates. Journal of Membrane Science, 308(1–2), 218-229. http://dx.doi.org/10.1016/j.memsci.2007.09.062.

11. Carvalho, R. B., Borges, C. P., & Nóbrega, R. Formação de membranas planas celulósicas por espalhamento duplo para os processos de nanofiltração e osmose inversa. Polímeros: Ciência e Tecnologia, 11(2), 65-75. http://dx.doi.org/10.1590/S0104-14282001000200008.

12. Shi, Y. Q., Wang, X. W., Chen, G. W., Golemme, G., Zhang, S. M., & Drioli, E. (1998). Preparation and characterization of high-performance dehydrating pervaporation alginate membranes. Journal of Applied Polymer Science, 68(6), 959-968. http://dx.doi.org/10.1002/(SICI)1097-4628(19980509)68:6<959::AID-APP9>3.0.CO;2-G.

13. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, F. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017.

14. Hargrove, M. S., Wilkinson, A. J., & Olson, J. S. (1996). Structural factors governing hemin dissociation from metmyoglobin. Biochemistry, 35(35), 11300-11309. http://dx.doi.org/10.1021/bi960372d. PMid:8784184.

15. Ordway, G. A., & Garry, D. J. (2004). Myoglobin: an essential hemoprotein in striated muscle. The Journal of Experimental Biology, 207(Pt 20), 3441-3446. http://dx.doi.org/10.1242/jeb.01172. PMid:15339940.

16. Marmo Moreira, L., Lima Poli, A., Costa-Filho, A. J., & Imasato, H. (2006). Pentacoordinate and hexacoordinate ferric hemes in acid medium: EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Glossoscolex paulistus. Biophysical Chemistry, 124(1), 62-72. http://dx.doi.org/10.1016/j.bpc.2006.05.030. PMid:16814451.

17. Mahlicli, F. Y., Altinkaya, S. A., & Yurekli, Y. (2012). Preparation and characterization of polyacrylonitrile membranes modified with polyelectrolyte deposition for separating similar sized proteins. Journal of Membrane Science, 415-416(1), 383-390. http://dx.doi.org/10.1016/j.memsci.2012.05.028.
588371c17f8c9d0a0c8b4a4d polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections