Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1748
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Mechanical and thermomechanical properties of polyamide 6/Brazilian organoclay nanocomposites

Paz, Renê Anisio da; Leite, Amanda Melissa Damião; Araújo, Edcleide Maria; Medeiros, Vanessa da Nóbrega; Melo, Tomás Jeferson Alves de; Pessan, Luiz Antonio

Downloads: 0
Views: 1114

Abstract

Polymer/clay nanocomposites are a new class of composites with polymer matrices where the disperse phase is a silicate with elementary particles that have at least one of dimensions in nanometer order. Polyamide 6/Brazilian organoclay nanocomposites were prepared by melt intercalation, and the mechanical, thermal and thermomechanical properties were studied. The structure and morphology of the nanocomposites were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was verified by XRD and TEM analysis that all systems presented exfoliated structure predominantly. By thermogravimetry (TG), nanocomposites showed higher stabilities in relation to pure polymer. It was observed that the nanocomposites showed better mechanical properties compared to the properties of polyamide 6. The heat deflection temperature (HDT) values of the nanocomposites showed a significant increase in relation to pure polymer.

Keywords

nanocomposites, polyamide 6, HDT, organoclays.

References

1. Shi, H., Lan, T., & Pinnavaia, T. J. (1996). Interfacial effects on the reinforcement properties of polymer organoclay nanocomposite. Chemistry of Materials, 8(8), 1584-1587. http://dx.doi.org/10.1021/cm960227m.

2. Souza Santos, P. (1989). Ciência e tecnologia de argilas. 2nd ed. São Paulo: Edgar Blucher.

3. Fornes, T. D., & Paul, D. R. (2003). Crystallization behavior of nylon 6 nanocomposites. Polymer, 44(14), 3945-3961. http://dx.doi.org/10.1016/S0032-3861(03)00344-6.

4. García-López, D., Fernández, J. F., Merino, J. C., & Pastor, J. M. (2013). Influence of organic modifier characteristic on the mechanical properties of polyamide 6/organosepiolite nanocomposites. Composites. Part B, Engineering, 45(1), 459-464. http://dx.doi.org/10.1016/j.compositesb.2012.09.087.

5. Pavlidou, S., & Papaspyrides, C. D. (2008). A review on polymer–layered silicate nanocomposites. Progress in Polymer Science, 33(12), 1119-1198. http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008.

6. Mészáros, L., Deák, T., Balogh, G., Czvikovszky, T., & Czigány, T. (2013). Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite. Composites Science and Technology, 75(11), 22-27. http://dx.doi.org/10.1016/j.compscitech.2012.11.013.

7. Barbosa, R., Morais, D. D. S., Nóbrega, K. C., Araújo, E. M., & Mélo, T. J. A. (2012). Influence of processing variables on the mechanical behavior of HDPE/clay nanocomposites. Materials Research, 15(3), 477-482. http://dx.doi.org/10.1590/S1516-14392012005000054.

8. Paz, R. A., Araújo, E. M., Pessan, L. A., Melo, T. J. A., Leite, A. M. D. & Medeiros, V. N. (2012). Influence of molecular weight of polyamide 6 in obtaining of nanocomposites with national organoclay. Materials Science Forum, 727, 1711-1777. Retrieved in 15 April 2014, from 10.4028/www.scientific.net/MSF.727-728.1711

9. Sinha Ray, S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28(11), 1539-1568. http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002.

10. Fornes, T. D., Yoon, P. J., Keskkula, H., & Paul, D. R. (2001). Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 42(25), 9929-9940. http://dx.doi.org/10.1016/S0032-3861(01)00552-3.

11. Paz, R. A., Leite, A. M. D., Araújo, E. M., Melo, T. J. A., & Pessan, L. A. (2010). Avaliação do comportamento térmico por DSC na Região da pele e do Núcleo de Amostras Injetadas de Nanocompósitos de Poliamida 6/Argila Organofílica. Polímeros, 20(4), 258-262. http://dx.doi.org/10.1590/S0104-14282010005000043.

12. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of polyamide 6-clay hybrid. Journal of Materials Research, 8(5), 5-11. http://dx.doi.org/10.1557/JMR.1993.1185.

13. Alexandre, M. & Dubois, P. (2000). Polymer-layered silicate nanocomposites; preparation, properties and uses of a new class of montmorillonite. Materials Science and Engineering, 28, 1-63. http://dx.doi.org/S0927796X(00)000127.

14. Ayres, E., & Oréfice, R. L. (2007). Nanocompósitos derivados de dispersões aquosas de poliuretano e argila: influência da argila na morfologia e propriedades mecânicas. Polímeros, 17(4), 339-344. http://dx.doi.org/10.1590/S0104-14282007000400015.

15. Paz, R. A., Araújo, E. M., Pessan, L. A., Melo, T. J. A., Leite, A. D., & Medeiros, V. N. (2012). Evaluation of impact strength of polyamide 6/bentonite clay nanocomposites. Materials Research, 15(4), 506-510. http://dx.doi.org/10.1590/S1516-14392012005000066.

16. Vaia, R. A., & Maguire, J. F. (2007). Polymer nanocomposites with prescribed morphology: going beyond nanoparticle-filled polymers. Chemistry of Materials, 19(11), 2736-2742. http://dx.doi.org/10.1021/cm062693+.

17. Krishnamoorti, R., & Vaia, R. A. (2007). Polymer nanocomposites. Journal of Polymer Science. Part B, Polymer Physics, 45(24), 3252-3259. http://dx.doi.org/10.1002/polb.21319.

18. Chavarria, F., & Paul, D. R. (2006). Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure. Polymer, 47(22), 7760-7766. http://dx.doi.org/10.1016/j.polymer.2006.08.067.

19. Noda, N., Lee, Y.-H., Bur, A. J., Prabhu, V. M., Snyder, C. R., Roth, S. C., & McBrearty, M. (2005). Dielectric properties of nylon 6/clay nanocomposites from on-line process monitoring and off-line measurements. Polymer, 46(18), 7201-7217. http://dx.doi.org/10.1016/j.polymer.2005.06.046.

20. Yoo, Y., & Paul, D. R. (2008). Effect of organoclay structure on morphology and properties of nanocomposites based on an amorphous polyamide. Polymer, 49(17), 3795-3804. http://dx.doi.org/10.1016/j.polymer.2008.06.014.

21. Vlasveld, D. P. N., Groenewold, J., Bersee, H. E. N., & Picken, S. J. (2005). Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer, 46(26), 12567-12576. http://dx.doi.org/10.1016/j.polymer.2005.10.096.

22. Díaz, V. F. R. (2001). Preparation of organophilic clays from a Brazilian smectitic clay. Key Engineering Materials. 189-191, 203-207. http://dx.doi.org/10.4028/www.scientific.net/KEM.189-191.203.

23. Díaz, V. F. R. (1994). Preparação a nível de laboratório de algumas argilas esmectíticas organofílicas (Tese de doutorado). Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo.

24. Paz, R. A., Leite, A. M. D., Araujo, E. M., Melo, T. J. A., Pessan, L. A., & Passador, F. R. (2013). Propriedades mecânicas e reológicas de nanocompósitos de poliamida 6 com argila Organofílica Nacional. Polímeros: Ciência e Tecnologia, 23(5), 682-689. http://dx.doi.org/10.4322/polimeros.2013.060.

25. Andrade, D. L. A. C. S. (2003). Desenvolvimento de nanocompósitos polipropileno/bentonita através da técnica de intercalação por fusão (Dissertação de mestrado). Universidade Federal de Campina Grande, Paraíba.

26. Lewin, M., Pearce, M. E., Levon, K., Mey-Marom, A., Zammarano, M., Wilkie, C. A., & Jang, B. N. (2006). Nanocomposites at elevated temperatures: migration and structural changes. Polymers for Advanced Technologies, 17(4), 226-234. http://dx.doi.org/10.1002/pat.684.

27. Chiu, F. C., Lai, S. M., Chen, Y. L., & Lee, T. H. (2005). Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener. Polymer, 46(25), 11600-11609. http://dx.doi.org/10.1016/j.polymer.2005.09.077.

28. Shen, S. Z., Bateman, S., Mcmahon, P., Dell’olio, M., Gotama, J., Nguyen, T. & Yuan, Q. (2010). The effects of Clay on fire performance and thermal mechanical properties of woven glass fibre reinforced polyamide 6 nanocomposites. Composites Science and Technology, 70(14), 2063-2067. http://dx.doi.org/10.1016/j.compscitech.2010.07.027.

29. González, T. V., Salazar, C. G., Rosa, J. R., & González, V. G. (2008). Nylon 6/organoclay nanocomposites by extrusion. Journal of Applied Polymer Science, 108(5), 2923-2933. http://dx.doi.org/10.1002/app.27307.

30. Li, T.-C., Ma, J., Wang, M., Tjiu, W. C., Liu, T., & Huang, W. (2007). Effect of Clay Addition on the Morphology and Thermal Behavior of Polyamide 6. Journal of Applied Polymer Science, 103(2), 1191-1199. http://dx.doi.org/10.1002/app.25378.

31. Oliveira, M. F. L., Oliveira, M. G., & Leite, M. C. A. M. (2011). Nanocompósitos de poliamida 6 e argila organofílica: estudo da cristalinidade e propriedades mecânicas. Polímeros: Ciência e Tecnologia, 21(1), 78-82. http://dx.doi.org/10.1590/S0104-14282011005000015.

32. Kohan, M. I. (1973). Nylon plastics (p. 683). New York: John Wiley & Sons.

33. Yu, S., Zhao, J., Chen, G., Juay, Y. K., & Yong, M. S. (2007). The characteristics of polyamide layered-silicate nanocomposites. Journal of Materials Processing Technology, 192-193(1), 410-414. http://dx.doi.org/10.1016/j.jmatprotec.2007.04.006.
588371d27f8c9d0a0c8b4a97 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections