Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1707
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Preparation of PLLA/PMMA and PLLA/PS binary blend nanoparticles by incorporation of PLLA in methyl methacrylate or styrene miniemulsion homopolymerization

Peres, Luana Becker; Peres, Laize Becker; Araújo, Pedro H. H.; Sayer, Claudia; Gonçalves, Odinei H.

Downloads: 1
Views: 939

Abstract

Miniemulsion homopolymerization reactions of methyl methacrylate (MMA) and styrene (STY) using poly(L‑lactide) as co-stabilizer were carried out in order to prepare poly(L-lactide)/poly(methyl methacrylate) (PLLA/PMMA) and poly(L‑lactide)/polystyrene (PLLA/PS) binary blend nanoparticles. The effect of PLLA concentration on methyl methacrylate (MMA) and styrene (STY) homopolymerization reactions was evaluated. It was found that the incorporation of PLLA resulted on acceleration of MMA and STY homopolymerization reactions and led to a molar mass increase of up to 70% for PS in PLLA/PS blend nanoparticles in relation to those prepared without PLLA, which can be attributed to an increase of reaction loci viscosity (gel effect). PLLA also acted as an efficient co-stabilizer, since it was able to retard diffusional degradation of droplets when no other kind of co-stabilizer was used. Two isolated Tgs were found in both PLLA/PMMA and PLLA/PS blend nanoparticles which can be associated to blend immiscibility. TEM images corroborate these results, suggesting that immiscible PLLA/PMMA and PLLA/PS blend nanoparticles could be formed with two segregated phases and core-shell morphology.

Keywords

miniemulsion polymerization, PLLA, polymer blend, polymeric nanoparticles.

References

1. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8-9), 762-798. http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017.

2. Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1-2), 1-20. http://dx.doi.org/10.1016/S0168-3659(00)00339-4.

3. Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances, 29(6), 792-803. http://dx.doi.org/10.1016/j.biotechadv.2011.06.007.PMid:21729746

4. Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24. http://dx.doi.org/10.1016/j.jcis.2011.07.017.

5. Shirahase, T., Komatsu, Y., Tominaga, Y., Asai, S., & Sumita, M. (2006). Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer, 47(13), 4839-4844. http://dx.doi.org/10.1016/j.polymer.2006.04.012.

6. Hamad, K., Kaseem, M., & Deri, F. (2010). Rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. Polymer Bulletin, 65(5), 509-519. http://dx.doi.org/10.1007/s00289-010-0354-2.

7. Kadla, J. F., & Kubo, S. (2004). Lignin-based polymer blends: analysis of intermolecular interactions in lignin–synthetic polymer blends. Composites Part A: Applied Science and Manufacturing, 35(3), 395-400. http://dx.doi.org/10.1016/j.compositesa.2003.09.019.

8. Espíndola-González, A., Martínez-Hernández, A. L., Fernández-Escobar, F., Castaño, V. M., Brostow, W., Datashvili, T., & Velasco-Santos, C. (2011). Natural-synthetic hybrid polymers developed via electrospinning: the effect of PET in chitosan/starch system. International Journal of Molecular Sciences, 12(3), 1908-1920. http://dx.doi.org/10.3390/ijms12031908. PMid:21673930

9. Eguiburu, J. L., Iruin, J. J., Fernandez-Berridi, M. J., & San Román, J. (1998). Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer, 39(26), 6891-6897. http://dx.doi.org/10.1016/S0032-3861(98)00182-7.

10. Zhang, G., Zhang, J., Wang, S., & Shen, D. (2003). Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). Journal of Polymer Science. Part B: Polymer Physics, 41(1), 23-30. http://dx.doi.org/10.1002/polb.10353.

11. Paul, D. R. (1986). Polymer Blends: Phase Behavior and Property Relationships. In D. R. Paul, & L. H. Sperling (Eds.), Multicomponent Polymer Materials (pp. 3-19). Washington: American Chemical Society.

12. Shimizu, R. N., & Demarquette, N. R. (2000). Evaluation of surface energy of solid polymers using different models. Journal of Applied Polymer Science, 76(12), 1831-1845. http://dx.doi.org/10.1002/(SICI)1097-4628(20000620)76:12<1831::AIDAPP14>3.0.CO;2-Q.

13. Utracki, L. (2003). Introduction to Polymer Blends. In L. A. Utracki (Ed.), Polymer Blends Handbook (pp. 1-122). Dordrecht: Kluwer Academic Publishers.

14. Guyot, A., Landfester, K., Joseph Schork, F., & Wang, C. (2007). Hybrid polymer latexes. Progress in Polymer Science, 32(12), 1439-1461. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.003.

15. Colmán, M. M. E., Moreira, R. P. M., Amaral, M., Araújo, P. H. H., & Sayer, C. (2011). Incorporation of PMMA and PS in Styrene and Methyl methacrylate Miniemulsion Homopolymerization. Macromolecular Symposia, 299-300(1), 41-47. http://dx.doi.org/10.1002/masy.200900141.

16. Sayer, C., & Araújo, P. H. H. (2010). Synthesis of Polymer Particles with Core-Shell Morphologies. In V. Mittal (Ed.), Advanced Polymer Nanoparticles: Synthesis and Surface Modifications (pp. 29-59). United States: CRC Press.

17. Nijenhuis, A. J., Grijpma, D. W., & Pennings, A. J. (1992). Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 25(24), 6419-6424. http://dx.doi.org/10.1021/ma00050a006.

18. Hyon, S. H., Jamshidi, K., & Ikada, Y. (1997). Synthesis of polylactides with different molecular weights. Biomaterials, 18(22), 1503-1508. http://dx.doi.org/10.1016/S0142-9612(97)00076-8. PMid:9426180

19. Costa, C., Timmermann, S. A. S., Pinto, J. C., Araujo, P. H. H., & Sayer, C. (2013). Compartmentalization Effects on Miniemulsion Polymerization with Oil-Soluble Initiator. Macromolecular Reaction Engineering, 7(5), 221-231. http://dx.doi.org/10.1002/mren.201200066.

20. Beuermann, S., & Buback, M. (2002). Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Progress in Polymer Science, 27(2), 191-254. http://dx.doi.org/10.1016/S0079-6700(01)00049-1.

21. Buback, M., Gilbert, R. G., Hutchinson, R. A., Klumperman, B., Kuchta, F.-D., Manders, B. G., O’Driscoll, K. F., Russell, G. T., & Schweer, J. (1995). Critically evaluated rate coefficients for free-radical polymerization, 1. Propagation rate coefficient for styrene. Macromolecular Chemistry and Physics, 196(10), 3267-3280. http://dx.doi.org/10.1002/macp.1995.021961016.

22. Cardoso, P. B., Araújo, P. H. H., & Sayer, C. (2013). Encapsulation of Jojoba and Andiroba Oils by Miniemulsion Polymerization. Effect on Molar Mass Distribution. Macromolecular Symposia, 324(1), 114-123. http://dx.doi.org/10.1002/masy.201200075.

23. Lu, X., & Weiss, R. A. (1992). Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules, 25(12), 3242-3246. http://dx.doi.org/10.1021/ma00038a033.
588371b97f8c9d0a0c8b4a2b polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections