Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.1678
Polímeros: Ciência e Tecnologia
Scientific & Technical Article

Análise numérica da pressão de ruptura de tubos à base de borracha e cordonéis poliméricos

Numeric analysis of the burst pressure pipe based on rubber and polymeric cords

Tonatto, Maikson Luiz Passaia; Forte, Maria Madalena de C.; Amico, Sandro C.; Roese, Pedro Barrionuevo; Araujo, Ricardo Teles

Downloads: 0
Views: 1056

Resumo

Este trabalho tem como objetivo estudar o efeito de cordonéis de poliéster, poliamida, poliaramida e híbrido poliamida/ poliaramida como reforço de elastômeros utilizados na fabricação de mangotes. O comportamento do tubo elastomérico reforçado com cordonéis sob pressão interna foi simulado com análise por elementos finitos (FEA) utilizando-se elementos chamados reinforcement bars. Foram realizados ensaios para se obter as propriedades em tração dos cordonéis para alimentar o modelo. O cordonel de poliaramida apresentou a maior tensão de ruptura, o de poliamida maior deformação na ruptura, e o híbrido apresentou valores intermediários. O critério de falha adotado para o tubo consistiu na análise do nível de carga no cordonel. Foram avaliadas, principalmente, a pressão e a deformação de ruptura do tubo elastomérico simulado frente à variação do ângulo de orientação dos cordonéis. Os resultados mostraram que ângulos próximos a 55° tornam o tubo mais resistente porém menos rígido no sentido longitudinal.

Palavras-chave

cordonel polimérico, propriedades em tração, ângulo de reforço, FEA, pressão de ruptura.

Abstract

This work investigates the effect of polyamide, polyester, polyaramid and hybrid (polyamide and polyaramid) cords as reinforcement for elastomers used in the production of marine hoses. The behavior of the elastomeric pipe reinforced with these cords under internal pressure was simulated with finite element analysis (FEA) using elements called reinforcement bars. To obtain input data for the model, tensile properties of the cords were evaluated. The polyaramid cord showed the highest ultimate stress, the polyamide the largest elongation at break, and the hybrid cord showed intermediate values. The failure criterion adopted for the pipe consisted of examining the allowable force in the cord. The analyses focused on the variation of pressure and strain at burst of the pipe with the orientation angle of the cords along the elastomeric tube. The results showed that angles close to 55° yielded stronger pipes but less rigid in their longitudinal direction.

Keywords

polymeric cord, tensile properties, reinforcement angle, FEA, burst pressure.

References

1. Aytac, A., Yilmaz, B., & Deniz, V. (2009). Effect of Twist Level on Tyre Cord Performance. Fibers and Polymer, 10(2), 221-225. http://dx.doi.org/10.1007/s12221-009-0221-7.

2. Oil Companies International Marine Forum. (2009). Guide to manufacturing and purchasing hoses for offshore moorings. London: Ocimf.

3. Hahn, C. (2000). Characteristics of p-Aramid Fibers in Friction and Sealing Materials. Journal of Industrial Textiles, 30(2), 146-165. http://dx.doi.org/10.1177/152808370003000205.

4. Kovac, F. J., & Kersker, T. M. (1964). The Development of the Polyester. Textile Research Journal, 34(1), 69-79. http://dx.doi.org/10.1177/004051756403400112.

5. Papero, P. V., Kubu, E., & Roldan, L. (1967). Fundamental Property Considerations in Tailoring a New Fiber. Textile Research Journal, 37(10), 823-833. http://dx.doi.org/10.1177/004051756703701002.

6. Naskar, A. K., Mukherjee, A. K., & Mukhopadhyay, R. (2004). Studies on tyre cords: degradation of polyester due to fatigue. Polymer Degradation & Stability, 83(1), 173-180. http://dx.doi.org/10.1016/S0141-3910(03)00260-X.

7. Tabaddor, F. (1985). Mechanical Properties of Cord-Rubber Composites. Ohio: Composite Structures.

8. Pidarti, R. M. V., & May, A. W. (1996). A micromechanical analysis to predict the cord-rubber composite properties. Composite Structures, 34(4), 361-369. http://dx.doi.org/10.1016/0263-8223(95)00133-6.

9. Önder, A. (2007). First failure pressure of composite pressure vessels (Tese de doutorado). Graduate School of Natural and Applied Sciences of Dokuz Eylül University, Izmir.

10. Kavekar, M. M.; Khatawate, M. V. H.; Patil, M. G. V. (2013). Weight reduction of pressure vessel using FRP composite material. International Journal of Mechanical Engineering and Technology (IJMET), 4, 300-310.

11. Grove, S. (1999). Optimum fiber orientation in filament wound structures. Journal of Materials Science Letters, 18(15), 1203. http://dx.doi.org/10.1023/A:1006694000701.

12. Lotveit, S. A.; Often, O. (1990). Increased reliability through a unified analysis tool for bonded and non-bonded pipes. Advances in subsea pipeline engineering and technology, 24, 81-110.

13. Gu, F., Huang, C.-K., Zhou, J., & Li, L. (2009). Mechanical Response of Steel Wire Wound Reinforced Rubber Flexible Pipe under Internal Pressure. Journal of Shanghai Jiaotong University (Science), 14(6), 747-756. http://dx.doi.org/10.1007/s12204-009-0747-2.

14. Alfano, G., Bahtui, A., & Bahai, H. (2009). Numerical derivation of constitutive models for unbonded flexible risers. International Journal of Mechanical Sciences, 51(4), 295-304. http://dx.doi.org/10.1016/j.ijmecsci.2009.02.002.

15. Sævik, S. (2011). Theoretical and experimental studies of stresses in flexible pipes. Computers & Structures, 89(23-24), 2273-2291. http://dx.doi.org/10.1016/j.compstruc.2011.08.008.

16. Gopez, F. (2008). Aramid yarn as a textile member in products. Rubber & Plastics News, 1, 14-16.

17. Zandiyeh, A. R. K. ( 2008). Mangueira resistente ao esmagamento. PI 0512531-6A. Rio de Janeiro: Instituto Nacional da Propriedade Industrial.

18. Rahiman, K. H., Unnikrishnan, G., Sujith, A., & Radhakrishnan, C. K. (2005). Cure characteristics and mechanical properties of styrene–butadiene rubber/acrylonitrile butadiene rubber. Materials Letters, 59(6), 633-639. http://dx.doi.org/10.1016/j.matlet.2004.10.050.

19. Abaqus, I. (2008). Analysis User’s Manual Volume V, Prescribed Conditions, Constraints & Interactions. Journal of Biomedical Science and Engineering, 6(11), 898.

20. Wardle, M. (1978). Aramid Fibers for high performance coated fabrics. Journal of Industrial Textiles, 7(4), 334-356. http://dx.doi.org/10.1177/152808377800700408.

21. Lambillotte, B. D. (1989). Fabric Reinforcements for Rubber. Journal of Industrial Textiles, 18(3), 162-179. http://dx.doi.org/10.1177/152808378901800303.

22. Behroozi, M., Olatunbosun, O. A., & Ding, W. (2011). Finite element analysis of aircraft tyre – Effect of model complexity on tyre performance characteristics. Materials and Design, 35, 810-819.

23. El-Lawindy, A. M. Y., & El-Guiziri, S. B. (2000). Strain energy density of carbon-black-loaded rubber vulcanizates. Journal of Physics D: Applied Physics, 33(15), 1894-1901. http://dx.doi.org/10.1088/0022-3727/33/15/320.

24. Arikan, H. (2009). Failure analysis of (±55º)3 filament wound composite pipes with an inclined surface crack under static internal pressure. Composite Structures, 92(1), 182-187.
588371bc7f8c9d0a0c8b4a36 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections