Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Effect of heat cycling on melting and crystallization of PHB/TiO2 compounds

Nichollas Guimarães Jaques; Ingridy Dayane dos Santos Silva; Manoel da Cruz Barbosa Neto; Andreas Ries; Eduardo Luis Canedo; Renate Maria Ramos Wellen

Downloads: 0
Views: 54


Abstract: Compounds of poly(3-hydroxybutyrate) (PHB) and titanium dioxide (TiO2) with filler content between 1% and 10% were prepared in a laboratory internal mixer. The effect of heating and cooling rates on the crystallization and melting of PHB/TiO2 compounds was investigated by differential scanning calorimetry (DSC). Melt and cold crystallization rates rise with increasing cooling/heating rates. A higher cooling rate translates to a lower melt crystallization temperature, while a higher heating rate results in a higher cold crystallization temperature. TiO2 promotes melt crystallization of PHB, behaving as a nucleant agent. The total crystallinity developed after melt and cold crystallization decreases for low levels of TiO2, i.e. 2% per weight, and is almost independent of the heating/cooling rate. The melting temperatures and rates are minimally affected by both the heating rate and filler content. The results suggest that the desired PHB microstructure can be controlled by filler content and adjusted heating/cooling rate.


crystallization, DSC, melting, PHB, titanium dioxide


1 Chen, G.-Q, & Wu, Q. (2005). The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26(33), 6565-6578. PMid:15946738. http://dx.doi.org/10.1016/j.biomaterials.2005.04.036.

2 Zinn, M., Witholt, B., & Egli, T. (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advanced Drug Delivery Reviews , 53(1), 5-21. PMid:11733115. http://dx.doi.org/10.1016/S0169-409X(01)00218-6.

3 Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science , 19(9), 2781-2794. http://dx.doi.org/10.1007/BF01026954.

4 Porter, M. M., & Yu, J. (2011). Crystallization kinetics of poly(3-hydroxybutyrate) granules in different environmental conditions. Journal of Biomaterials and Nanobiotechnology , 2(3), 301-310. http://dx.doi.org/10.4236/jbnb.2011.23037.

5 Doi, Y., Kanesawa, Y., Kunioka, M., & Saito, T. (1990). Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules, 23(1), 26-31. http://dx.doi.org/10.1021/ma00203a006.

6 Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2007). Biodegradation and physical evaluation of PHB packaging. Polymer Testing, 26(7), 908-915. http://dx.doi.org/10.1016/j.polymertesting.2007.06.013.

7 Bordes, P., Pollet, E., & Avérous, L. (2009). Nano-biocomposites: Biodegradable polyester/nanoclay systems. Progress in Polymer Science, 34(2), 125-155. http://dx.doi.org/10.1016/j.progpolymsci.2008.10.002.

8 Hufenus, R., Reifler, F. A., Fernández-Ronco, M. P., & Heuberger, M. (2015). Molecular orientation in melt-spun poly(3-hydroxybutyrate) fibers: Effect of additives, drawing and stress-annealing. European Polymer Journal, 71, 12-26. http://dx.doi.org/10.1016/j.eurpolymj.2015.07.039.

9 Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., Jimenez, A., Yoon, K., Ahn, J., Kang, S., & Kenny, J. M. (2015). Bio-based PLA-PHB plasticized blend films. Part I: Processing and structural characterization. Lebensmittel-Wissenschaft + Technologie, 64(2), 980-988. http://dx.doi.org/10.1016/j.lwt.2015.06.032.

10 Kurusu, R. S., Siliki, C. A., David, E., Demarquette, N. R., Gauthier, C., & Chenal, J. (2015). Incorporation of plasticizers in sugarcane-based poly(3-hydroxybutyrate) (PHB): Changes in microstructure and properties through ageing and annealing. Industrial Crops and Products, 72, 166-174. http://dx.doi.org/10.1016/j.indcrop.2014.12.040.

11 Ma, P., Xu, P., Chen, M., Dong, W., Cai, X., Schmit, P., Spoelstra, A. B., & Lemstra, P. J. (2014). Structure–property relationships of reactively compatibilized PHB/EVA/starch blends. Carbohydrate Polymers, 108, 299-306. PMid:24751277. http://dx.doi.org/10.1016/j.carbpol.2014.02.058.

12 Mousavioun, P., Halley, P. J., & Doherty, W. O. S. (2013). Thermophysical properties and rheology of PHB/lignin blends. Industrial Crops and Products, 50, 270-275. http://dx.doi.org/10.1016/j.indcrop.2013.07.026.

13 Wellen, R. M. R., Rabello, M. S., Araujo, I. C., Jr., Fechine, G. J. M., & Canedo, E. L. (2015). Melting and crystallization of poly(3-hydroxybuturate). Effect of heating/cooling rates on phase transformation. Polímeros, 25(3), 296-304. http://dx.doi.org/10.1590/0104-1428.1961.

14 Wellen, R. M. R., Canedo, E. L., & Rabello, M. S. (2015). Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. Journal of Materials Research, 30, 3211-3226. http://dx.doi.org/10.1557/jmr.2015.287.

15 Vitorino, M. B. C., Cipriano, P. B., Wellen, R. M. R., Canedo, E. L., & Carvalho, L. H. (2016). Nonisothermal melt crystallization of PHB/Babassu compounds. Kinetics ofcrystallization. Journal of Thermal Analysis and Calorimetry, 126(2), 755-769. http://dx.doi.org/10.1007/s10973-016-5514-7.

16 Ries, A., Canedo, E. L., & Wellen, R. M. R. (2016). Non-isothermal cold crystallization kinetics of poly(3-hydoxybutyrate) filled with zinc oxide. Thermochimica Acta , 637, 74-81. http://dx.doi.org/10.1016/j.tca.2016.06.002.

17 Wang, S., & Zhang, J. (2014). Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behaviour. Journal of Alloys and Compounds , 617, 163-169. http://dx.doi.org/10.1016/j.jallcom.2014.07.191.

18 Supaphol, P., Thanomkiat, P., Junkasem, J., & Dangtungee, R. (2007). Non-isothermal melt-crystallization and mechanical properties of titanium(IV) oxide nanoparticle-filled isotactic polypropylene. Polymer Testing, 26(1), 20-37. http://dx.doi.org/10.1016/j.polymertesting.2006.07.011.

19 Yang, T., Noguchi, T., Isshiki, M., & Wu, J. (2014). Effect of titanium dioxide on chemical and molecular changes in PVC sidings during QUV accelerated weathering. Polymer Degradation & Stability, 104, 33-39. http://dx.doi.org/10.1016/j.polymdegradstab.2014.03.023.

20 Olmos, D., Dominguez, C., Castrillo, P. D., & Gonzalez-Benito, J. (2009). Crystallization and final morphology of HDPE: Effect of the high energy ball milling and the presence of TiO2 nanoparticles. Polymer, 50(7), 1732-1742. http://dx.doi.org/10.1016/j.polymer.2009.02.011.

21 Yew, S., Tang, H., & Sudesh, K. (2006). Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polymer Degradation & Stability, 91(8), 1800-1807. http://dx.doi.org/10.1016/j.polymdegradstab.2005.11.011.

22 Scuderi, V., Buccheri, M. A., Impellizzeri, G., Di Mauro, A., Rappazzo, G., Bergum, K., Svensson, B. G., & Privitera, V. (2016). Photocatalytic and antibacterial properties of titanium dioxide flat film. Materials Science in Semiconductor Processing, 42(Part 1), 32-35. http://dx.doi.org/10.1016/j.mssp.2015.09.005.

23 Lin, B., Luo, Y., Teng, Z., Zhang, B., Zhou, B., & Wang, Q. (2015). Development of silver/titanium dioxide/chitosan adipate nanocomposite as an antibacterial coating for fruit storage. Lebensmittel-Wissenschaft + Technologie, 63(2), 1206-1213. http://dx.doi.org/10.1016/j.lwt.2015.04.049.

24 Kangwansupamonkon, W., Lauruengtana, V., Surassmo, S., & Ruktanonchai, U. (2009). Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine; Nanotechnology, Biology, and Medicine, 5(2), 240-249. PMid:19223243. http://dx.doi.org/10.1016/j.nano.2008.09.004.

25 Pleskova, S. N., Golubeva, I. S., & Verevkin, Y. K. (2016). Bactericidal activity of titanium dioxide ultraviolet-induced films. Materials Science and Engineering C , 59, 807-817. PMid:26652436. http://dx.doi.org/10.1016/j.msec.2015.10.021.

26 Farias, E. A., Dionisio, N. A., Quelemes, P. V., Leal, S. H., Matos, J. M., Silva, E. C., Fo., Bechtold, I. H., Leite, J. R., & Eiras, C. (2014). Development and characterization of multilayer films of polyaniline, titanium dioxide and CTAB for potential antimicrobial applications. Materials Science and Engineering C, 35, 449-454. PMid:24411400. http://dx.doi.org/10.1016/j.msec.2013.11.002.

27 Gogolewski, S., Jovanovic, M., Perren, S. M., Dillon, J. G., & Hughes, M. K. (1993). The effect of melt-processing on the degradation of selected polyhydroxy acids: polylactides, polyhydroxybutyrate, and polyhydroxybutyrate-co- valerates. Polymer Degradation & Stability, 40(3), 313-320. http://dx.doi.org/10.1016/0141-3910(93)90137-8.

28 El-Hadi, M., Schnabel, R., Straube, E., Müller, G., & Riemschneider, M. (2002). Effect of melt processing on crystallization behavior and rheology of poly(3-hydroxybutyrate) (PHB) and its blends. Macromolecular Materials and Engineering, 287(5), 363-272. http://dx.doi.org/10.1002/1439-2054(20020501)287:5<363::AID-MAME363>3.0.CO;2-D.

29 Wagner, M. (2010). Thermal analysis in practice. Schwerzenbach: Mettler-Toledo.

30 Menczel, J. D., & Prime, R. B. (2009). Thermal analysis of polymers . NewYork: Wiley.

31 Barham, P. J., Keller, A., Otun, E. L., & Holmes, P. A. (1984). Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. Journal of Materials Science , 19(9), 2781-2794. http://dx.doi.org/10.1007/BF01026954.

32 Papageorgiou, G. Z., & Panayiotou, C. (2011). Crystallization and melting of biodegradable poly(propylene suberate). Thermochimica Acta, 523(1-2), 187-199. http://dx.doi.org/10.1016/j.tca.2011.05.023.

33 Furushima, Y., Nakada, M., Takahashi, H., & Ishikiriyama, K. (2014). Study of melting and crystallization behavior of polyacrylonitrile using ultrafast differential scanning calorimetry. Polymer, 55(13), 3075-3081. http://dx.doi.org/10.1016/j.polymer.2014.05.015.

34 Owen, A. J., Heinzel, J., Škrbić, Ž., & Divjaković, V. (1992). Crystallization and melting behaviour of PHB and PHB/HV copolymer. Polymer , 33(7), 1563-1567. http://dx.doi.org/10.1016/0032-3861(92)90139-N.

35 Gunaratne, L. M. W. K., & Shanks, R. A. (2005). Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. European Polymer Journal, 41(12), 2980-2988. http://dx.doi.org/10.1016/j.eurpolymj.2005.06.015.

36 Schawe, J. E. K., & Bergmann, E. (1997). Investigation of polymer melting by temperature modulated differential scanning calorimetry and its description using kinetic models. Thermochimica Acta, 304-305, 179-186. http://dx.doi.org/10.1016/S0040-6031(97)00187-1.

37 Avila-Orta, C. A., Medellın-Rodrıguez, F. J., Wang, Z.-G., Navarro-Rodrıguez, D., Hsiao, B. S., & Yeh, F. (2003). On the nature of multiple melting in poly(ethylene terephthalate) (PET) and its copolymers with cyclohexylene dimethylene terephthalate (PET/CT). Polymer, 44(5), 1527-1535. http://dx.doi.org/10.1016/S0032-3861(02)00832-7.

38 Toda, A., Tomita, C., Hikosaka, M., & Saruyama, Y. (1998). Melting of polymer crystals observed by temperature modulated d.s.c. and its kinetic modelling. Polymer , 39(21), 5093-5104. http://dx.doi.org/10.1016/S0032-3861(97)10075-1.

39 Asadinezhad, A., Khonakdar, H. A., Häuβler, L., Wagenknecht, U., & Heinrich, G. (2014). Crystallization and melting behavior of poly (ethylene succinate) in presence of graphene nanoplatelets. Thermochimica Acta, 586(20), 17-24. http://dx.doi.org/10.1016/j.tca.2014.03.048.

40 Toda, A., Taguchi, K., Nozaki, K., & Konishi, M. (2014). Melting behaviors of polyethylene crystals: an application of fast-scan DSC. Polymer, 55(14), 3186-3194. http://dx.doi.org/10.1016/j.polymer.2014.05.009.

41 Wang, N., Tu, R., Ma, X., Xie, Q., & Jiang, X. (2013). Melting behavior of typical thermoplastic materials – An experimental and chemical kinetics study. Journal of Hazardous Materials, 262, 9-15. PMid:24007994. http://dx.doi.org/10.1016/j.jhazmat.2013.08.024.

42 Beekmans, L. G. M., van der Meer, D. W., & Vancso, G. J. (2002). Crystal melting and its kinetics on poly(ethylene oxide) by in situ atomic force microscopy. Polymer, 43(6), 1887-1895. http://dx.doi.org/10.1016/S0032-3861(01)00748-0.

43 Almeida, T. G. (2015). Compósitos de Poli(butileno adioato-co-tereftalato e fibra de babaçu: efeito do processamento e do tipo e teor de carga. Universidade Federal de Campina Grande, Campina Grande.

44 Wellen, R. M. R., Rabello, M. S., Fechine, G. J. M., & Canedo, E. L. (2013). The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polymer Testing , 32(2), 215-220. http://dx.doi.org/10.1016/j.polymertesting.2012.11.001.

5b7c5fb60e88252e1c896e52 polimeros Articles
Links & Downloads


Share this page
Page Sections