Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/article/doi/10.1590/0104-1428.11717
Polímeros: Ciência e Tecnologia
Original Article

Investigation on influence of stamp forming parameters on formability of thermoplastic composite

Suresh, Sugumar; Kumar, Velukkudi Santhanam Senthil

Downloads: 0
Views: 24

Abstract

Abstract: Advanced fabric reinforced polymer composites find extensive applications in aerospace and structural fields due to their high mechanical properties. A novel stamp forming technique finds extensive use in the hemispherical forming of thermoplastic composites. This study investigates the influence of stamp forming parameters on the formability of thermoplastic composite using Taguchi’s robust design and grey relational analysis. Taguchi’s orthogonal array was used for designing the forming experiments. Responses such as forming ratio and logarithmic thickness strain were considered for the assessment of sheet formability through single and multi-response optimization. Analysis of variance was used for the determination of the contribution of each parameter on formability and it was identified that the die temperature acts as a prominent factor, followed by blank holder force and blank temperature. The confirmation test was conducted at optimum parameter levels and the obtained experimental grade was seen within the confidence interval of the predicted value.

Keywords

thermoplastic composite; stamp forming; sheet formability; grey relational analysis; optimization

References

Hufenbach, W., Böhm, R., Thieme, M., Winkler, A., Mäder, E., Rausch, J., & Schade, M. (2011). Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Materials & Design32(3), 1468-1476. http://dx.doi.org/10.1016/j.matdes.2010.08.049. 

Spadetti, C., Silva, E. A. D., Fo., Sena, G. L. D., & Melo, C. V. P. D. (2017). Thermal and mechanical properties of post-consumer polypropylene composites reinforced with cellulose fibers. Polímeros: Ciência e Tecnologia27(Special), 84-90. http://dx.doi.org/10.1590/0104-1428.2320. 

Rietman, B., Niazi, M. S., & Akkerman, R. (2013). FibreChain: characterization and modeling of thermoplastic composites processing. In Proceedings of the Texcomp-11 Conference (p. 1-7). Leuven, Belgie: S. V. Lomov. 

Yanagimoto, J., & Ikeuchi, K. (2012). Sheet forming process of carbon fiber reinforced plastics for lightweight parts. CIRP Annals-Manufacturing Technology , 61(1), 247-250. http://dx.doi.org/10.1016/j.cirp.2012.03.129. 

Mehat, N. M., Kamaruddin, S., & Othman, A. R. (2014). Hybrid integration of taguchi parametric design, grey relational analysis, and principal component analysis optimization for plastic gear production. Chinese Journal of Engineering, 351206. http://dx.doi.org/10.1155/ 2014/351206.

Davey, S., Cantwell, W., Das, R., & Kalyanasundaram, S. (2012). Investigation into the formability of carbon fibre/polyether ether ketone composite sheets in stamp forming processes. In Proceedings of the 15th European Conference on Composite Materials (p. 1-8). Venice, Italy: ECCM. Retrieved in 2017, November 28, from http://www.escm.eu.org/eccm15/data/assets/666.pdf.

Nurul Fazita, M. R., Jayaraman, K., & Bhattacharyya, D. (2016). Formability analysis of bamboo fabric reinforced poly (Lactic) acid composites. Materials (Basel) , 9(7), 539. http://dx.doi.org/10.3390/ma9070539. PMid:28773662. 

Lessard, H., Lebrun, G., Benkaddour, A., & Pham, X. T. (2015). Influence of process parameters on the thermostamping of a [0/90]12 carbon/polyether ether ketone laminate. Composites. Part A, Applied Science and Manufacturing70, 59-68. http://dx.doi.org/10.1016/j.compositesa.2014.12.009. 

Ma, C. M., Yu, C. T., & Cheng, B. W. (2014). Optimization of stamp forming process for thermoplastic composites. Research Journal of Applied Sciences, Engineering and Technology , 7(8), 1568-1572. http://dx.doi.org/10.19026/rjaset.7.433. 

Zhu, B., Yu, T. X., Zhang, H., & Tao, X. M. (2011). Experimental investigation of formability of commingled woven composite preform in stamping operation. Composites. Part B, Engineering42(2), 289-295. http://dx.doi.org/10.1016/j.compositesb.2010.05.006.

Venkatesan, S., & Kalyanasundaram, S. (2010). Finite element analysis and optimization of process parameters during stamp forming of composite materials. IOP Conference Series. Materials Science and Engineering10(1), 012138. http://dx.doi.org/10.1088/1757-899X/10/1/012138. 

Kalyanasundaram, S., Dharmalingam, S., Venkatesan, S., & Sexton, A. (2013). Effect of process parameters during forming of self reinforced–PP based Fiber Metal Laminate. Composite Structures97, 332-337. http://dx.doi.org/10.1016/j.compstruct.2012.08.053.

Vanclooster, K., Van Goidsenhoven, S., Lomov, S. V., & Verpoest, I. (2009). Optimizing the deep drawing of multi-layered woven fabric composites. International Journal of Material Forming2(1), 153-156. http://dx.doi.org/10.1007/s12289-009-0522-9. 

Lee, J. S., Hong, S. J., Yu, W. R., & Kang, T. J. (2007). The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Composites Science and Technology67(3), 357-366. http://dx.doi.org/10.1016/j.compscitech.2006.09.009. 

Yin, H., Peng, X., Du, T., & Chen, J. (2015). Forming of thermoplastic plain woven carbon composites: An experimental investigation. Journal of Thermoplastic Composite Materials28(5), 730-742. http://dx.doi.org/10.1177/0892705713503668. 

Trudel-Boucher, D., Fisa, B., Denault, J., & Gagnon, P. (2006). Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics. Composites Science and Technology66(3), 555-570. http://dx.doi.org/10.1016/j.compscitech.2005.05.036. 

Haanappel, S. P., Ten Thije, R. H. W., Sachs, U., Rietman, B., & Akkerman, R. (2014). Formability analyses of uni-directional and textile reinforced thermoplastics. Composites. Part A, Applied Science and Manufacturing56, 80-92. http://dx.doi.org/10.1016/j.compositesa.2013.09.009. 

Shirani, M., Agahi, A., Sadough, S. A., & Biglari, F. R. (2006). Experimental and analytical analysis of thermoplastic reinforced composite sheet deep drawing. In Proceedings of the MATERIAUX (Vol. 1, No. 1). Dijon, France: French Federation of Materials.

Taflick, T., Maich, É. G., Ferreira, L. D., Bica, C. I. D., Rodrigues, S. R. S., & Nachtigall, S. M. B. (2015). Acacia bark residues as filler in polypropylene composites. Polímeros: Ciência e Tecnologia25(3), 289-295. http://dx.doi.org/10.1590/0104-1428.1840.

Jayaraman, P., & kumar, L. M. (2014). Multi-response optimization of machining parameters of turning AA6063 T6 aluminium alloy using grey relational analysis in Taguchi method. Procedia Engineering97, 197-204. http://dx.doi.org/10.1016/j.proeng.2014.12.242. 

Suresh, S., & Senthil Kumar, V. S. (2016). Influence of process parameters on the forming behaviour of thermoplastic composite: an experimental approach. International Journal of Printing. Packaging & Allied Sciences4(3), 1553-1564. 

Mohaiyiddin, M. S., Lin, O. H., Akil, H. M., Yee, T. G., Adik, N. N. A. N., & Villagracia, A. R. (2016). Effects of polypropylene methyl polyhedral oligomeric silsesquioxanes and polypropylene-grafted maleic anhydride compatibilizers on the properties of palm kernel shell reinforced polypropylene biocomposites. Polímeros: Ciência e Tecnologia26(3), 228-235. http://dx.doi.org/10.1590/0104-1428.2038. 

Zhang, Q., Cai, J., & Gao, Q. (2014). Simulation and experimental study on thermal deep drawing of carbon fiber woven composites. Journal of Materials Processing Technology , 214(4), 802-810. http://dx.doi.org/10.1016/j.jmatprotec.2013.11.024. 

Isogawa, S., Aoki, H., & Tejima, M. (2014). Isothermal forming of CFRTP sheet by penetration of hemispherical punch. Procedia Engineering81, 1620-1626. http://dx.doi.org/10.1016/j.proeng.2014.10.201. 

Davey, S., Das, R., Cantwell, W. J., & Kalyanasundaram, S. (2013). Forming studies of carbon fibre composite sheets in dome forming processes. Composite Structures , 97, 310-316. http://dx.doi.org/10.1016/j.compstruct.2012.10.026. 

Bhattacharyya, D., Bowis, M., & Jayaraman, K. (2003). Thermoforming woodfibre–polypropylene composite sheets. Composites Science and Technology63(3), 353-365. http://dx.doi.org/10.1016/S0266-3538(02)00214-2. 

Sadighi, M., Rabizadeh, E., & Kermansaravi, F. (2008). Effects of laminate sequencing on thermoforming of thermoplastic matrix composites. Journal of Materials Processing Technology201(1), 725-730. http://dx.doi.org/10.1016/j.jmatprotec.2007.11.239. 

Vijayan, S., Raju, R., & Rao, S. R. K. (2009). Friction stir welding of Al–Mg alloy: comparison of process parameter optimization between single and multi response using Taguchi methodology. International Journal of Applied Engineering Research4(5), 709-725. Retrieved in 2017, November 28, from https://www.ripublication.com/ijaerv4/ijaerv4n5_7.pdf.

Haq, A. N., Marimuthu, P., & Jeyapaul, R. (2008). Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. International Journal of Advanced Manufacturing Technology37(3), 250-255. http://dx.doi.org/10.1007/s00170-007-0981-4. 

Kuo, Y., Yang, T., & Huang, G. W. (2008). The use of a grey-based Taguchi method for optimizing multi-response simulation problems. Engineering Optimization40(6), 517-528. http://dx.doi.org/10.1080/03052150701857645. 

Tong, L. I., Su, C. T., & Wang, C. H. (1997). The optimization of multi-response problems in the Taguchi method. International Journal of Quality & Reliability Management14(4), 367-380. http://dx.doi.org/10.1108/02656719710170639. 

Yang, T., & Chou, P. (2005). Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in Simulation68(1), 9-21. http://dx.doi.org/10.1016/j.matcom.2004.09.004. 

Sathiya, P., Aravindan, S., & Noorul Haq, A. (2006). Optimization for friction welding parameters with multiple performance characteristics. International Journal of Mechanics and Materials in Design3(4), 309-318. http://dx.doi.org/10.1007/s10999-007-9037-z. 

Vijayan, S., Raju, R., & Rao, S. K. (2010). Multiobjective optimization of friction stir welding process parameters on aluminum alloy AA 5083 using Taguchi-based grey relation analysis. Materials and Manufacturing Processes25(11), 1206-1212. http://dx.doi.org/10.1080/10426910903536782. 

Panneerselvam, R. (2012). Design and analysis of experiments. India: PHI Learning (P) Ltd. 

5c55aca20e88256c04b25bb2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections