Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Microstructure and thermal and functional properties of biodegradable films produced using zein

Crislene Barbosa de Almeida; Elisângela Corradini; Lucimara Aparecida Forato; Raul Fujihara; José Francisco Lopes Filho

Downloads: 0
Views: 41


Abstract: Research is being conducted in an attempt to produce biodegradable packaging to replace plastic products, thereby reducing solid waste disposal. In this work, zein films were produced from vegetable oils (macadamia, olive and buriti) and from pure oleic acid. The surface of zein-based films made using oleic acid has a good lipid distribution. The high content of oleic acid produced a film with the greatest elongation at break (8.08 ± 2.71%) due to the greater homogeneity of the protein matrix. The different oils did not affect the glass transition temperature (Tg). Tg curves of films with fatty acids showed a reduction in mass at between 50 and 120 °C due to water evaporation. At 120 °C the weight loss was 3-5% and above this temperature further weight loss was observed with the highest loss being seen in the film made using pure oleic acid. In conclusion, although biodegradable films were produced using the four different oils, the film made from pure oleic acid has the best characteristics.


biodegradable films, biomaterial, zein


Lending, C. R., & Larkins, B. A. (1989). Changes in the zein compostion of protein bodies during maize endosperm development. The Plant Cell, 1(10), 1011-1023. PMid:2562552. http://dx.doi.org/10.1105/tpc.1.10.1011.

Zhang, H., & Mittal, G. (2010). Biodegradable protein-based films from plant resources: a review. Environmental Progress & Sustainable Energy, 29(2), 203-220. http://dx.doi.org/10.1002/ep.10463.

Corradini, E., Curti, P., Meniqueti, A., Martins, A., Rubira, A., & Muniz, E. (2014). Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. International Journal of Molecular Sciences , 15(12), 22438-22470. PMid:25486057. http://dx.doi.org/10.3390/ijms151222438.

Shi, W., & Dumont, M. J. (2014). Review: bio-based films from zein, keratin, pea, and rapeseed protein feedstocks. Journal of Materials Science, 49(5), 1915-1930. http://dx.doi.org/10.1007/s10853-013-7933-1.

Shi, K., Yu, H., Lee, T.-C., & Huang, Q. (2013). Improving ice nucleation activity of zein film through layer-by-layer deposition of extracellular ice nucleators. ACS Applied Materials & Interfaces, 5(21), 10456-10464. PMid:24106783. http://dx.doi.org/10.1021/am4016457.

Li, K.-K., Yin, S.-W., Yang, X.-Q., Tang, C.-H., & Wei, Z.-H. (2012). Fabrication and characterization of novel antimicrobial films derived from thymol-loaded zein-sodium caseinate (SC) nanoparticle. Journal of Agricultural and Food Chemistry , 60(46), 11592-11600. PMid:23121318. http://dx.doi.org/10.1021/jf302752v.

Wu, Y., Luo, Y., & Wang, Q. (2012). Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid-liquid dispersion method. Lebensmittel-Wissenschaft + Technologie, 48(2), 283-290. http://dx.doi.org/10.1016/j.lwt.2012.03.027.

Khairuddin, N., & Muhamad, I. I. (2013). Potential of antimicrobial film containing thymol with pH indicator to increase biosafety of packed food. Jurnal Teknologi , 62(2), 31-34. http://dx.doi.org/10.11113/jt.v62.1875.

Ghasemi, S., Javadi, N. H. S., Moradi, M., & Khorsravi-Darani, K. (2015). Application of zein antimicrobial edible film incorporatating Zataria multiflora boiss essential oil for preservation of Iranian ultrafiltered Feta cheese. African Journal of Biotechnology , 14(24), 2014-2021. http://dx.doi.org/10.5897/AJB2014.13992.

Liu, J., Wu, J.-J., Li, N., Yang, F.-Y., & Xu, Y.-Z. (2010). Periodontal tissue engineered scaffold materials fabricated with zein. Journal of Clinical Rehabilitative Tissue Engineering Research, 14(42), 7873-7877. Retrieved in 2016, November 30, from http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDKF201042026.htm

Zhou, P., Xia, Y., Cheng, X., Wang, P., Xie, Y., & Xu, S. (2014). Enhance bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zeincomposite scaffolds loaded with rrBMP-2. Biomaterials, 35(38), 10033-10045. PMid:25260421. http://dx.doi.org/10.1016/j.biomaterials.2014.09.009.

Tavares, L. L., Almeida, C. B., Caruso, Í. P., Cornélio, M. L., & Lopes, J. F., Fo. (2012). Effect of modified clays on the structure and functional properties of biofilm produced with zein. Food Science and Technology, 32(2), 314-322. http://dx.doi.org/10.1590/S0101-20612012005000056.

Ribeiro, W. X., Lopes, J. F., Fo., Cortes, M. S., & Tadini, C. C. (2015). Characterization of biodegradable film based on zein and oleic acid added with nanocarbonate. Ciência Rural, 45(10), 1890-1894. http://dx.doi.org/10.1590/0103-8478cr20141391.

Scramin, J. A., Britto, D., Forato, L. A., Bernardes-Filho, R., Colnago, L. A., & Assis, O. B. G.. (2011). Characterization of zein-oleic acid zein films and application in fruit coating. International Journal of Food Science & Technology, 46(10), 2145-2152. http://dx.doi.org/10.1111/j.1365-2621.2011.02729.x.

Colzato, M., Scramin, J. A., Forato, L. A., Colnago, L. A., & Assis, O. B. G. (2011). 1H NMR investigation of oil oxidation in macadamia nuts caoted with zein-based films. Journal of Food Processing and Preservation, 35(6), 790-796. http://dx.doi.org/10.1111/j.1745-4549.2011.00530.x.

Cheng, S. Y., Wang, B. J., & Weng, Y. M. (2015). Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. Lebensmittel-Wissenschaft + Technologie, 63(1), 115-121. http://dx.doi.org/10.1016/j.lwt.2015.03.030.

Matta, M., Jr., Sarmento, S. B. S., Sarantopoulos, C. I. G. L., & Zocchi, S. S. (2011). Propriedades de barreira e solubilidade de filmes de amido de ervilha associado com goma xantana e glicerol. Polímeros: Ciência e Tecnologia, 21(1), 67-72. http://dx.doi.org/10.1590/S0104-14282011005000011.

Erickson, D. P., Renzetti, S., Jurgens, A., Campanella, O. H., & Hamaker, B. R. (2014). Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. Journal of Cereal Science, 60(3), 576-583. http://dx.doi.org/10.1016/j.jcs.2014.08.001.

Pena-Serna, C., & Lopes Filho, J. F. (2013). Influence of ethanol and glycerol concentration over functional and structural properties of zein-oleic acid films. Materials Chemistry and Physics, 142(2-3), 580-585. http://dx.doi.org/10.1016/j.matchemphys.2013.07.056.

Liang, J., Xia, Q., Wang, S., Li, J., Huang, Q., & Ludescher, R. D. (2015). Influence of glycerol on the molecular mobility, oxygen permeability and microstructure of amorphous zein films. Food Hydrocolloids, 44, 94-100. http://dx.doi.org/10.1016/j.foodhyd.2014.09.002.

Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effects of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. Journal of Food Engineering, 75(1-4), 453-460. http://dx.doi.org/10.1016/j.jfoodeng.2005.04.031.

Verdolotti, L., Oliviero, M., Lavorgna, M., Iozzino, V., Larobina, D., & Iannace, S. (2015). Bio-hybrid foams by silsesquioxanes cross-linked thermoplastic zein films. Journal of Cellular Plastics, 51(1), 75-87. http://dx.doi.org/10.1177/0021955X14529138.

Rogers, C. E. (1985). Permeation of gases and vapors in polymer. In J. Comyn (Ed.). Polymer permeability (pp. 11-73). Netherlands: Springer.

Corradini, E., Pineda, E. A. G., & Hechenleitner, A. A. W. (1999). Lignin-poly (vinyl alcohol) blends studied by thermal analysis. Polymer Degradation & Stability , 66(2), 199-208. http://dx.doi.org/10.1016/S0141-3910(99)00066-X.

Haines, P. J. (2012). Thermal methods of analysis: principles, applications and problems. Netherlands: Springer.

Hartman, L., & Lago, R. C. A. (1973). Rapid preparation of fatty acid methy esters from lipids. Laboratory Practice, 22(6), 475-476. PMid:4727126.

Holland, B., Welch, A. A., & Buss, D. H. (2002). Vegetable dishes. In Royal Society Of Chemistry – RSC. McCance and widdowson's the composition of foods: 6th summary edition . Cambridge: RSC.

Horwitz, W. (2005). Official methods of analysis of Association of Official Analytical Chemists (18th ed., 2, 41, met. 996.06, 20). Washington: AOAC.

Firestone, D. (2006). Official methods and recommended practices of the American Oil Chemistry Society (5th ed., AOCS Official method Ce 1e-91, Ce 1f-96, Ce1-62). Champaign: AOCS.

American Society for Testing and Materials – ASTM. (2002). D882-91: Annual Book of American Society for Test and Material Standards, standard test methods for tensile strength of plastic sheets. Philadelphia: The Society. http://dx.doi.org/10.1520/D0882-10.

Ha, T. T., & Padua, G. W. (2001). Effect of extrusion processing of properties of zein-fatty acids sheets. Transactions of the ASAE. American Society of Agricultural Engineers , 44(5), 1223-1228. http://dx.doi.org/10.13031/2013.6416.

Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactantes as affeted by their microstructure. Food Hydrocolloids, 19(1-6), 53-61. http://dx.doi.org/10.1016/j.foodhyd.2004.04.014.

Padua, G. W., & Wang, Q. (2002). Formation and properties of corn zein films and coatings. In A. Gennadios. Protein-based films and coatings (pp. 43-67). London: CRC Press.

Ghanbarzadeh, B., Musavi, M., Oromiehie, A. R., Rezayi, K., Razmi Rad, E., & Milani, J. (2007). Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films. Lebensmittel-Wissenschaft + Technologie , 40(7), 1191-1197. http://dx.doi.org/10.1016/j.lwt.2006.07.008.

Corradini, E., Carvalho, A. J. F., Curvelo, A. A. S., Agnelli, J. A. M., & Mattoso, L. H. C. (2007). Preparation and characterization of thermoplastic starch/zein blends. Materials Research, 10(3), 221-231. http://dx.doi.org/10.1590/S1516-14392007000300002.

Almeida, C. B., Catelan, K. T., Cornélio, M. L., & Lopes, J. F., Fo. (2010). Morphological and structural characteristics of zein biofilms with added xanthan gum. Food Technology and Biotechnology, 48(1), 19-27. Retrieved in 2016, November 30, from http://www.ftb.com.hr/images/pdfarticles/2010/January-March/48-19.pdf

Hafsa, J., Smach, M., Khedher, M. R. B., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Lebensmittel-Wissenschaft + Technologie , 68, 356-364. http://dx.doi.org/10.1016/j.lwt.2015.12.050.

Batista, J. A., Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Efeito da adição de ácidos graxos em filmes à base de pectina. Food Science and Technology , 25(4), 781-788. http://dx.doi.org/10.1590/S0101-20612005000400025.

Lai, H.-M., & Padua, G. W. (1997). Properties and microstructure of plasticized zein films. Cereal Chemistry, 74(1-6), 771-775. http://dx.doi.org/10.1094/CCHEM.1997.74.6.771.

Ghanbarzadeh, B., Oromiehie, A. R., Musavi, M., D-Jomeh, Z. E., Rad, E. R., & Milani, J. (2006). Effect of plasticizing sugars on rheological and thermal properties of zein films. Food Research International, 39, 1-10, 882-890. http://dx.doi.org/10.1016/j.foodres.2006.05.011.

Canevarolo, S. V., Jr. (2010). Ciência dos Polímeros: um texto básico para tecnólogos e engenheiros. 3rd ed. São Paulo: Artliber.

Tandon, G., Förster, G., Neubert, R., & Wartewig, S. (2000). Phase transitions in oleic acid as studied by X-ray diffraction and FT-Raman spectroscopy. Journal of Molecular Structure, 524(1-3), 201-215. http://dx.doi.org/10.1016/S0022-2860(00)00378-1.

Magoshi, J., Nakamura, S., & Murakami, K.-I. (1992). Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. Journal of Applied Polymer Science, 45(11), 2043-2048. http://dx.doi.org/10.1002/app.1992.070451119.

Wang, Q., Crofts, A. R., & Padua, G. W. (2003). Protein-lipid interactions in zein films investigated by surface plasmon resonance. Journal of Agricultural and Food Chemistry , 51(25), 7439-7444. PMid:14640596. http://dx.doi.org/10.1021/jf0340658.

Lucas, E. F., Soares, B. G., & Monteiro, E. (2001). Caracterização de polímeros: determinação de peso molecular e análise térmica (Série Instituto de Macromoléculas). Rio de Janeiro: e-papers.

Oliviero, M., Di Maio, E., & Iannace, S. (2010). Effect of molecular structure on film blowing ability of thermoplastic zein. Journal of Applied Polymer Science , 115(1), 277-287. http://dx.doi.org/10.1002/app.31116.

Corradini, E. (2004). Desenvolvimento de blendas poliméricas de zeína e amido de milho (Master’s thesis). Universidade de São Paulo, São Carlos.

Schlemmer, D., Sales, M. J. A., & Resck, I. S. (2010). Preparação, caracterização e degradação de blendas PS / TPS usando glicerol e óleo de buriti como plastificantes. Polímeros: Ciência e Tecnologia, 20(1), 6-13. http://dx.doi.org/10.1590/S0104-14282010005000002.

Pena-Serna, C., & Lopes, J. F., Fo. (2015). Biodegradable zein-based blend films: structural, mechanical and barrier properties. Food Technology and Biotechnology , 53(3), 348-353. PMid:27904368.

Péroval, C., Debeaufort, F., Despré, D., & Voilley, A. (2002). Edible arabinoxylan-based films. 1. Effects of lipid type on water vapor permeability, film structure, and other physical characteristics. Journal of Agricultural and Food Chemistry , 50(14), 3977-3983. PMid:12083869. http://dx.doi.org/10.1021/jf0116449.

Yang, L., & Paulson, A. T. (2000). Effects of Lipids on Mechanical and Moisture Barrier Properties of Edible Gellan Film. Food Research International, 33(7), 571-578. http://dx.doi.org/10.1016/S0963-9969(00)00093-4.

Debeaufort, F., Quezada-Gallo, J. A., Delporte, B., & Voilley, A. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55. http://dx.doi.org/10.1016/S0376-7388(00)00532-9.

Chang, C., & Nickerson, M. T. (2014). Effect of plasticizer-type and genipin on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films. European Food Research and Technology, 238(1), 35-46. http://dx.doi.org/10.1007/s00217-013-2075-x.

5b7c4abb0e88252348896e53 polimeros Articles
Links & Downloads


Share this page
Page Sections