Polímeros: Ciência e Tecnologia
http://revistapolimeros.org.br/article/doi/10.1590/0104-1428.10417
Polímeros: Ciência e Tecnologia
Original Article

Synthesis of flexible polyurethane foams by the partial substitution of polyol by steatite

Plínio César de Carvalho Pinto; Virginia Ribeiro da Silva; Maria Irene Yoshida; Marcone Augusto Leal de Oliveira

Downloads: 0
Views: 64

Abstract

Abstract: This work describes the synthesis of composites steatite/flexible polyurethane by replacing 4.5 wt. % of polyol with steatite rock powder. We evaluated two mechanical properties of composites (comfort factor and support factor) for various formulations based on a fractional factorial design. The new synthesized composites showed higher support factor, greater comfort factor, and lower cost, compared to conventional flexible polyurethane foams. There is not a significant change in the chemical composition of the foams, due to substitution of 4.5 wt. % polyol by steatite. However, there was a decrease in cell size and greater interaction between the hard segments of the composite.

Keywords

composites, foam, steatite, mechanical properties, polyurethanes

References

Mano, E. B., & Mendes, L. C. (1999). Introdução a polímeros . São Paulo: Edgard Blücher Ltd.

Bernal, M. M., Lopez-Manchado, M. A., & Verdejo, R. (2011). In situ foaming evolution of flexible polyurethane foam nanocomposites. Macromolecular Chemistry and Physics , 212(9), 971-979. http://dx.doi.org/10.1002/macp.201000748.

Wilkinson, A. N., Fithriyah, N. H., Stanford, J. L., & Suckley, D. (2007). Structure development in flexible polyurethane foam-layered silicate nanocomposites. Macromolecular Symposia, 256(1), 65-72. http://dx.doi.org/10.1002/masy.200751007.

Andersson, A., Lundmark, S., Magnusson, A., & Maurer, F. H. J. (2009). Shear behavior of flexible polyurethane foams under uniaxial compression. Journal of Applied Polymer Science, 111(5), 2290-2298. http://dx.doi.org/10.1002/app.29244.

Pavlicevic, J., Spirkova, M., Strachota, A., Szécsényi, K. M., Lazic, N., & Budinski-Simendic, J. (2010). The influence of montmorillonite and bentonite addition on thermal properties of polyurethanes based on aliphatic polycarbonate diols. Thermochimica Acta, 509(1), 73-80. http://dx.doi.org/10.1016/j.tca.2010.06.005.

Bistricic, L., Baranovic, G., Leskovac, M., & Bajsic, E. G. (2010). Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane–silica nanocomposites. European Polymer Journal, 46(10), 1975-1987. http://dx.doi.org/10.1016/j.eurpolymj.2010.08.001.

Ni, H., Yap, C. K., & Jin, Y. (2007). Effect of curing moisture on the indentation force deflection of flexible polyurethane foam. Journal of Applied Polymer Science , 104(3), 1679-1682. http://dx.doi.org/10.1002/app.25798.

Rightor, E. G., Urquhart, S. G., Hitchcock, A. P., Ade, H., Smith, A. P., Mitchell, G. E., Priester, R. D., Aneja, A., Appel, G., Wilkes, G., & Lidy, W. E. (2002). Identification and quantification of urea precipitates in flexible polyurethane foam formulations by X-ray spectromicroscopy. Macromolecules, 35(15), 5873-5882. http://dx.doi.org/10.1021/ma0122627.

Mello, D., Pezzin, S. H., & Amico, S. C. (2009). The effect of post-consumer PET particles on the performance of flexible polyurethane foams. Polymer Testing, 28(7), 702-708. http://dx.doi.org/10.1016/j.polymertesting.2009.05.014.

Singh, H., & Jain, A. K. (2009). Ignition, combustion, toxicity, and fire retardancy of polyurethane foams: a comprehensive review. Journal of Applied Polymer Science , 111(2), 1115-1143.

Garrido, M. A., & Font, R. (2015). Pyrolysis and combustion study of flexible polyurethane foam. Journal of Analytical and Applied Pyrolysis, 113, 202-215. http://dx.doi.org/10.1016/j.jaap.2014.12.017.

Gaan, S., Liang, S., Mispreuve, H., Perler, H., Naescher, R., & Neisius, M. (2015). Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polymer Degradation & Stability, 113, 180-188. http://dx.doi.org/10.1016/j.polymdegradstab.2015.01.007.

Li, Y. C., Yang, Y. H., Shields, J. R., & Davis, R. D. (2015). Layered double hydroxide-based fire resistant coatings for flexible polyurethane foam. Polymer, 56, 284-292. http://dx.doi.org/10.1016/j.polymer.2014.11.023.

Nikje, M. M. A., Moghaddam, S. T., Noruzian, M., Nejad, M. A. F., Shabani, K., Haghshenas, M., & Shakhesi, S. (2014). Preparation and characterization of flexible polyurethane foam nanocomposites reinforced by magnetic core-shell Fe3O4@APTS nanoparticles. Colloid & Polymer Science, 292(3), 627-633. http://dx.doi.org/10.1007/s00396-013-3099-2.

Polyurethane Foam Association. (1993). Compression modulus (support factor). INTOUCH®, 3(1), 1-4. Retrieved in 2017, December 20, from http://pfa.org/intouch/index.html

Pérez-Maqueda, L. A., Duran, A., & Pérez-Rodríguez, J. L. (2005). Preparation of submicron talc particles by sonication. Applied Clay Science , 28(1-4), 245-255. http://dx.doi.org/10.1016/j.clay.2004.01.012.

Kaggwa, G. B., Huynh, L., Ralston, J., & Bremmell, K. (2006). The influence of polymer structure and morphology on talc wettability. Langmuir, 22(7), 3221-3227. http://dx.doi.org/10.1021/la052303i. PMid:16548581.

Nkoumbou, C., Villieras, F., Barres, O., Bihannic, I., Pelletier, M., Razafitianamaharavo, A., Metang, V., Yonta Ngoune, C., Njopwouo, D., & Yvon, J. (2008). Physicochemical properties of talc ore from Pout-Kelle and Memel deposits (central Cameroon). Clay Minerals , 43(2), 317-337. http://dx.doi.org/10.1180/claymin.2008.043.2.11.

Dellisanti, F., Valdrè, G., & Mondonico, M. (2009). Changes of the main physical and technological properties of talc due to mechanical strain. Applied Clay Science , 42(3), 398-404. http://dx.doi.org/10.1016/j.clay.2008.04.002.

Barros, B. B. No, Scarminio, I. S., & Bruns, R. E. (2010). Como fazer experimentos: aplicações na ciência e na indústria. Campinas: Bookman.

Yoshida, M. I., Silva, V. R., Pinto, P. C. C., Sant’Anna, S. S., Silva, M. C., & Carvalho, C. F. (2012). Physico-chemical characterization and thermal analysis data of alumina waste from Bayer process. Journal of Thermal Analysis and Calorimetry, 109(3), 1429-1433. http://dx.doi.org/10.1007/s10973-011-1830-0.

Smolander, K., Saastamoinen, A., & Ahlgrén, M. (1989). Determination of talc in geological samples by infrared spectrometry. Analytica Chimica Acta , 217, 353-358. http://dx.doi.org/10.1016/S0003-2670(00)80417-1.

Gopal, N. O., Narasimhulu, K. V., & Rao, J. L. (2004). Optical absorption, EPR, infrared and Raman spectral studies of clinochlore mineral. Journal of Physics and Chemistry of Solids, 65(11), 1887-1893. http://dx.doi.org/10.1016/j.jpcs.2004.07.003.

Gopal, N. O., Narasimhulu, K. V., & Rao, J. L. (2004). EPR, optical, infrared and Raman spectral studies of Actinolite mineral. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy, 60(11), 2441-2448. http://dx.doi.org/10.1016/j.saa.2003.12.021. PMid:15294226.

Petit, S., Martin, F., Wiewiora, A., de Parseval, P., & Decarreau, A. (2004). Crystal-chemistry of talc: a near infrared (NIR) spectroscopy study. The American Mineralogist , 89(2), 319-326. http://dx.doi.org/10.2138/am-2004-2-310.

Yang, H., Du, C., Hu, Y., Jin, S., Yang, W., Tang, A., & Avvakumov, E. G. (2006). Preparation of porous material from talc by mechanochemical treatment and subsequent leaching. Applied Clay Science, 31(3), 290-297. http://dx.doi.org/10.1016/j.clay.2005.10.015.

Martin, F., & Micoud, P. (1999). The structural formula of talc from the Trimouns deposit, Pyrenées, France. Canadian Mineralogist, 37(4), 997-1006.

Zhang, M., Hui, Q., Lou, X. J., Redfern, S. A. T., Salje, E. K. H., & Tarantino, S. C. (2006). Dehydroxylation, proton migration, and structural changes in heated talc: An infrared spectroscopic study. The American Mineralogist, 91(5), 816-825. http://dx.doi.org/10.2138/am.2006.1945.

Wallqvist, V., Claesson, P. M., Swerin, A., Schoelkopf, J., & Gane, P. A. C. (2009). Influence of wetting and dispersing agents on the interaction between talc and hydrophobic particles. Langmuir, 25(12), 6909-6915. http://dx.doi.org/10.1021/la900192g. PMid:19334743.

Univar Polyurethane. (2017). Guia técnico de espumas flexíveis Univar®. Osasco: Univar. Retrieved in 2017, December 20, from http://www.univar.com/pt-BR/Brazil/Industries/~/media/PDFs/BR%20Region%20PDFs/Catalogos/POLYURETHANE/COMPONENTES/Espumas%20Flexiveis.ashx

Deer, W. A., Howie, R. A., & Zussman, J. (1992). An introduction to the rock-forming minerals. Harlow: Pearson.

Michot, L. J., Villiéras, F., François, M., Yvon, J., Dred, R., & Cases, J. M. (1994). The structural microscopic hydrophilicity of talc. Langmuir , 10(10), 3765-3773. http://dx.doi.org/10.1021/la00022a061.

Pérez-Maqueda, L. A., Balek, V., Poyato, J., Subrt, J., Benes, M., Ramírez-Valle, V., Buntseva, I. M., Beckman, I. N., & Pérez-Rodríguez, J. L. (2008). Transport properties and microstructure changes of talc characterized by emanation thermal analysis. Journal of Thermal Analysis and Calorimetry, 92(1), 253-258. http://dx.doi.org/10.1007/s10973-007-8819-8.

Balek, V., Pérez-Maqueda, L. A., Poyato, J., Cerný, Z., Ramírez-Valle, V., Buntseva, I. M., & Pérez-Rodríguez, J. L. (2007). Effect of grinding on thermal reactivity of ceramic clay minerals. Journal of Thermal Analysis and Calorimetry, 88(1), 87-91. http://dx.doi.org/10.1007/s10973-006-8093-1.

Sonnenschein, M., Wendt, B. L., Schrock, A. K., Sonney, J. M., & Ryan, A. J. (2008). The relationship between polyurethane foam microstructure and foam aging. Polymer , 49(4), 934-942. http://dx.doi.org/10.1016/j.polymer.2008.01.008.

Kaushiva, B. D., McCartney, S. R., Rossmy, G. R., & Wilkes, G. L. (2000). Surfactant level influences on structure and properties of flexible slabstock polyurethane foams. Polymer, 41(1), 285-310. http://dx.doi.org/10.1016/S0032-3861(99)00135-4.

Zhang, X. D., Macosko, C. W., Davis, H. T., Nikolov, A. D., & Wasan, D. T. (1999). Role of silicone surfactant in flexible polyurethane foam. Journal of Colloid and Interface Science, 215(2), 270-279. http://dx.doi.org/10.1006/jcis.1999.6233. PMid:10419661.

Dounis, D. V., & Wilkes, G. L. (1997). Structure-property relationships of flexible polyurethane foams. Polymer, 38(11), 2819-2828. http://dx.doi.org/10.1016/S0032-3861(97)85620-0.

Tu, Y.C., Suppes, G. J., & Hsieh, F.H. (2009). Thermal and mechanical behavior of flexible polyurethane-molded plastic films and water-blown foams with epoxidized soybean oil. Journal of Applied Polymer Science, 111(3), 1311-1317. http://dx.doi.org/10.1002/app.29178.

Ludwick, A., Aglan, H., Abdalla, M. O., & Calhoun, M. (2008). Degradation behavior of an ultraviolet and hygrothermally aged polyurethane elastomer: Fourier Transform infrared and differential scanning calorimetry studies. Journal of Applied Polymer Science , 110(2), 712-718. http://dx.doi.org/10.1002/app.28523.

Barbosa, L. C. A. (2007). Espectroscopia no Infravermelho na caracterização de compostos orgânicos. Viçosa: Editora UFV.

Zhao, P. Z., Wang, Y. S., Zhu, J. H., Hua, X. Y., & Wen, Q. Z. (2008). Characterization of graded polyurethane elastomer by FTIR. Science in China. Series B, Chemistry , 51(1), 58-61. http://dx.doi.org/10.1007/s11426-007-0093-x.

Herrera, M., Matuschek, G., & Kettrup, A. (2002). Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer Degradation & Stability , 78(2), 323-331. http://dx.doi.org/10.1016/S0141-3910(02)00181-7.

Ravey, M., & Pearce, E. M. (1997). Flexible polyurethane foam I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. Journal of Applied Polymer Science, 63(1), 47-74. http://dx.doi.org/10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-S.

Spirckel, M., Regnier, N., Mortaigne, B., Youssef, B., & Bunel, C. (2002). Thermal degradation and fire performance of new phosphonate polyurethanes. Polymer Degradation & Stability, 78(2), 211-218. http://dx.doi.org/10.1016/S0141-3910(02)00135-0.

Allan, D., Daly, J., & Liggat, J. J. (2013). Thermal volatilisation analysis of TDI-based flexible polyurethane foam. Polymer Degradation & Stability, 98(2), 535-541. http://dx.doi.org/10.1016/j.polymdegradstab.2012.12.002.
 

5bb671780e8825356dbd3c08 polimeros Articles
Links & Downloads

Polimeros

Share this page
Page Sections