Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.09917
Polímeros: Ciência e Tecnologia
Original Article

Molecular dynamics studies of amylose plasticized with Brazilian Cerrado oils: part I

Silva, Felipe Azevedo Rios; Sales, Maria José Araújo; Paterno, Leonardo Giordano; Ghoul, Mohamed; Chebil, Latifa; Maia, Elaine Rose

Downloads: 0
Views: 1161

Abstract

Abstract: Biodegradable polymers have become part of the realm of polymer science with specially when associated to renewable sources. Unraveling the plasticizer effect of natural occurring fatty acids in the Brazilian Cerrado on amylose oligomers was aimed in this work in an aqueous environment. Since the interactions within a material are of extreme importance to its molecular behavior, the main focus was directed to the molecular interactions whether intra or intermolecular type. Molecular Mechanics and Dynamics were carried out to shed light on this issue. The simulation results suggest the fatty acids could perform as efficient plasticizers for more complex polysaccharides such as starch. It also highlights the importance the solvation on the system stabilization, thus contributing to a clearer understanding of the chemical interactions role on plasticization. Our results provide a basis for simulating more complex systems such as a clay-mineral which will culminate in the parameterization for mesoscale studies.

Keywords

amylose, Cerrado oils, molecular mechanics and dynamics, plasticization, polymer consistent force field

References

Halley, P. J. (2005). Themoplastic starch biodegradable polymers. In R. Smith (Ed.), Biodegradable polymers for industrial applications (p. 140-162). Cambridge: Woodhead Publishing. http://dx.doi.org/10.1533/9781845690762.1.140.

Schlemmer, D., Angélica, R. S., & Sales, M. J. A. (2010). Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Composite Structures, 92(9), 2066-2070. http://dx.doi.org/10.1016/j.compstruct.2009.10.034.

Pérez, S., Kouwijzer, M., Mazeau, K., & Engelsen, S. B. (1996). Modeling polysaccharides: present status and challenges. Journal of Molecular Graphics, 14(6), 307-321. http://dx.doi.org/10.1016/S0263-7855(97)00011-8. PMid:9195482.

Angellier, H., Molina-Boisseau, S., Dole, P., & Dufresne, A. (2006). Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules , 7(2), 531-539. http://dx.doi.org/10.1021/bm050797s. PMid:16471926.

Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch, 62(8), 389-420. http://dx.doi.org/10.1002/star.201000013.

Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375. http://dx.doi.org/10.3144/expresspolymlett.2009.46.

Schlemmer, D., & Sales, M. J. A. (2010). Thermoplastic starch films with vegetable oils of Brazilian Cerrado. Journal of Thermal Analysis and Calorimetry, 99(2), 675-679. http://dx.doi.org/10.1007/s10973-009-0352-5.

Ray, S. S. (2014). Recent trends and future outlooks in the field of clay-containing polymer nanocomposites. Macromolecular Chemistry and Physics, 215(12), 1162-1179. http://dx.doi.org/10.1002/macp.201400069.

Castro, D. O., Frollini, E., Ruvolo-Filho, A., & Dufresne, A. (2015). “Green polyethylene” and curauá cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. Journal of Polymer Science. Part B, Polymer Physics, 53(14), 1010-1019. http://dx.doi.org/10.1002/polb.23729.

Schlemmer, D., Oliveira, E. R., & Sales, M. J. A. (2007). Polystyrene/thermoplastic starch blends with different plasticizers. Journal of Thermal Analysis and Calorimetry , 87(3), 635-638. http://dx.doi.org/10.1007/s10973-006-7776-y.

Pimentel, T. A. P. F., Durães, J. A., Drummond, A. L., Schlemmer, D., Falcão, R., & Sales, M. J. A. (2007). Preparation and characterization of blends of recycled polystyrene with cassava starch. Journal of Materials Science, 42(17), 7530-7536. http://dx.doi.org/10.1007/s10853-007-1622-x.

Yu, L., Dean, K., & Li, L. (2006). Polymer blends and composites from renewable resources. Progress in Polymer Science, 31(6), 576-602. http://dx.doi.org/10.1016/j.progpolymsci.2006.03.002.

Brasil. Ministério do Meio Ambiente. (2017). O bioma Cerrado . Brasília. Retrieved in 2017, October 19, from http://www.mma.gov.br/biomas/cerrado

Traesel, G. K., de Araújo, F. H. S., Castro, L. H. A., de Lima, F. F., Menegati, S. E. L. T., Justi, P. N., Kassuya, C. A. L., Cardoso, C. A. L., Argandoña, E. J. S., & Oesterreich, S. A. (2017). Safety assessment of oil from pequi (Caryocar brasiliense Camb.): evaluation of the potential genotoxic and clastogenic effects. Journal of Medicinal Food, 20(8), 804-811. http://dx.doi.org/10.1089/jmf.2017.0021. PMid:28557544.

Guedes, A. M. M., Antoniassi, R., & de Faria-Machado, A. F. (2017). Pequi: a Brazilian fruit with potential uses for the fat industry. Oilseeds & Fats Crops and Lipids , 24(5), 1-4. http://dx.doi.org/10.1051/ocl/2017040.

Barbosa, M. U., Silva, M. A., Barros, E. M. L., Barbosa, M. U., Sousa, R. C., Lopes, M. A. C., & Coelho, N. P. M. F. (2017). Topical action of Buriti oil (Mauritia flexuosa L. ) in myositis induced in rats. Acta Cirurgica Brasileira, 32(11), 956-963. http://dx.doi.org/10.1590/s0102-865020170110000007. PMid:29236800.

Yang, J., Tang, K., Qin, G., Chen, Y., Peng, L., Wan, X., Xiao, H., & Xia, Q. (2017). Hydrogen bonding energy determined by molecular dynamics simulation and correlation to properties of thermoplastic starch films. Carbohydrate Polymers, 166(15), 256-263. http://dx.doi.org/10.1016/j.carbpol.2017.03.001. PMid:28385231.

Tusch, M., Krüger, J., & Fels, G. (2011). Structural stability of V-amylose helices in water-DMSO mixtures analyzed by molecular dynamics. Journal of Chemical Theory and Computation, 7(9), 2919-2928. http://dx.doi.org/10.1021/ct2005159. PMid:26605481.

López, C. A., Vries, A. H., & Marrink, S. J. (2012). Amylose folding under the influence of lipids. Carbohydrate Research, 364(15), 1-7. http://dx.doi.org/10.1016/j.carres.2012.10.007. PMid:23128420.

Dufresne, A. (2015) Starch and nanoparticle. In K. G. Ramawat, J. M. Mérillon (Eds.), Polysaccharides: bioactivity and biotechnology (p. 417-449). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-16298-0_72.

Feng, T., Wang, K., Zhuang, H., Bhopatkar, D., Carignano, M. A., Park, S. H., & Bing, F. (2017). Molecular dynamics simulation of amylose-linoleic acid complex behavior in water. Journal of Nanoscience and Nanotechnology, 17(7), 4724-4732. http://dx.doi.org/10.1166/jnn.2017.13444.

BIOVIA. (2012). Dassault systèmes BIOVIA: materials studio, release 6.0 . San Diego: Dassault Systèmes BIOVIA.

Sun, H., Mumby, S. J., Maple, J. R., & Hagler, A. T. (1994). An ab Initio CFF93 all-atom force field for polycarbonates. Journal of the American Chemical Society, 116(7), 2978-2987. http://dx.doi.org/10.1021/ja00086a030.

Sun, H. (1995). Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules, 28(3), 701-712. http://dx.doi.org/10.1021/ma00107a006.

Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., & Hagler, A. T. (1988). Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins, 4(1), 31-47. http://dx.doi.org/10.1002/prot.340040106. PMid:3054871.

Hill, J. R., & Sauer, J. (1994). Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica. Journal of Physical Chemistry, 98(4), 1238-1244. http://dx.doi.org/10.1021/j100055a032.

Tang, C., Zhang, S., Wang, Q., Wang, X., & Hao, J. (2017). Thermal stability of modified insulation paper cellulose based on molecular dynamics simulation. Energies , 10(3), 397-408. http://dx.doi.org/10.3390/en10030397.

Min, S. H., Kwak, S. K., & Kim, B.-S. (2015). Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate). Soft Matter , 11(12), 2423-2433. http://dx.doi.org/10.1039/C4SM02242D. PMid:25662300.

Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Physical Review, 159(1), 98-103. http://dx.doi.org/10.1103/PhysRev.159.98.

Hoover, W. G. (1985). Canonical dynamics: equilibrium phase-space distributions. Physical Review A., 31(3), 1695-1697. http://dx.doi.org/10.1103/PhysRevA.31.1695. PMid:9895674.

Allen, M. P., & Tildesley, D. J. (1989). Computer simulation of liquids . New York: Clarendon Press.

Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics , 81(8), 3684-3690. http://dx.doi.org/10.1063/1.448118.

Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen der Physik, 369(3), 253-287. http://dx.doi.org/10.1002/andp.19213690304.

Tosi, M. P. (1964) Cohesion of Ionic Solids in the Born Model Based on work performed under the auspices of the U.S. Atomic Energy Commission. In F. Seitz, & D. Turnbull (Eds.), Solid state physics (p. 1-120), New York: Academic Press.
 

5b7c67700e8825a638896e51 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections