Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Hyperbranched polyester polyol modified with polylactic acid as a compatibilizer for plasticized tapioca starch/polylactic acid blends

Ricardo Mesias; Edwin Murillo

Downloads: 0
Views: 42


Abstract: A hyperbranched polyester polyol of the second generation (HBP2) was modified with polylactic acid (HBP2-g-PLA) and employed as a compatibilizer for plasticized tapioca starch (TPS)/polylactic acid (PLA) blends. The effect of the compatibilizer HBP2- g-PLA was evaluated in comparison to the control sample (TPS/PLA blend without HBP2-g-PLA). The torque value of the TPS/PLA blends with HBP2- g-PLA was lower than that of the control sample, while thermal stability and crystallinity followed opposite behavior. The glass transition temperature (Tg) and degree of crystallinity of the TPS/PLA blends with HBP2-g-PLA decreased with increasing mass fraction of HBP2-g-PLA. By scanning electron microscopy (SEM), it was observed that the morphology of the TPS/PLA blends with HBP2-g -PLA was more homogeneous than that of the control sample, confirming that HBP2- g-PLA acted as a compatibilizer and plasticizing agent to the TPS/PLA blends. Rheological analysis of the compatibilized TPS/PLA blends indicated the presence of microstructure.


biodegradable polymers, hyperbranched polyester, compatibilization, thermoplastic starch/PLA blend, properties


Kun-yu, Z., Xiang-hai, R., Yu-gang, Z., Bin, Y., & Li-song, D. (2009). Blends of poly (lactic acid) with thermoplastic acetylated starch. Chemical Research in Chinese Universities , 25, 748-753. Retrieved in 2016, July 26, from

Cai, J., Cai, C., Man, J., Zhou, W., & Wei, C. (2014). Structural and functional properties of C-type starches. Carbohydrate Polymers, 101, 289-300. http://dx.doi.org/10.1016/j.carbpol.2013.09.058.

Schwach, E., Six, J.-L., & Avérous, L. (2008). Biodegradable blends based on starch and poly(lactic acid): comparison of different strategies and estimate of compatibilization. Journal Polymer Environment, 16(4), 286-297. http://dx.doi.org/10.1007/s10924-008-0107-6.

Lu, D. R., Xiao, C. M., & Xu, S. J. (2009). Starch-based completely biodegradable polymer materials. Express Polymer Letters, 3(6), 366-375. http://dx.doi.org/10.3144/expresspolymlett.2009.46.

Guzmán, M., & Murillo, E. A. (2015). The properties of blends of maleic-anhydride-grafted polyethylene and thermoplastic starch using hyperbranched polyester polyol as a plasticizer. Polymer Engineering and Science, 55(11), 2526-2533. http://dx.doi.org/10.1002/pen.24143.

Yang, J. H., Yu, J. G., & Ma, X. F. (2006). Study on the properties of ethylenebisformamide and sorbitol plasticized corn starch (ESPTPS). Carbohydrate Polymers , 66(1), 110-116. http://dx.doi.org/10.1016/j.carbpol.2006.02.029.

Ke, T., & Sun, X. S. (2003). Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends. Journal of Polymers and Environment, 11(1), 7-14. http://dx.doi.org/10.1023/A:1023875227450.

Jun, C. L. (2000). Reactive blending of biodegradable polymers : PLA and starch. Journal of Polymers and the Environment, 8(1), 33-37. http://dx.doi.org/10.1023/A:1010172112118.

Leadprathom, J., Suttiruengwong, S., Threepopnatkul, P., & Seadan, M. (2010) Compatibilized polylactic acid/thermoplastic starch by reactive blend. Journal of Metals, Materials and Minerals, 20, 87-90. http://dx.doi.org/10.1155/2010/287082.

Yang, Y., Tang, Z., Xiong, Z., & Zhu, J. (2015). Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). International Journal of Biological Macromolecules, 77, 273-279. PMid:25840151. http://dx.doi.org/10.1016/j.ijbiomac.2015.03.053.

Raghavan, D., & Emekalam, A. (2001). Characterization of starch/polyethylene and starch/polyethylene/poly(lactic acid) composites. Polymer Degradation & Stability, 72(3), 509-517. http://dx.doi.org/10.1016/S0141-3910(01)00054-4.

Michel, A. H., & Hongbo, L. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. http://dx.doi.org/10.1016/j.polymer.2006.11.023.

Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/ starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. PMid:23218370. http://dx.doi.org/10.1016/j.carbpol.2012.09.007.

Murillo, E. A., Cardona, A., & López, B. (2010). Rheological behavior in the molten state and solution of hyperbranched polyester of fourth and fifth generation. Journal of Applied Polymer Science, 119(2), 929-935. http://dx.doi.org/10.1002/app.32774.

Murillo, E, A., Vallejo, P. P., & López, B. L. (2010). Characterization of hydroxylated hyperbranched polyesters of fourth and fifth generation. e-Polymer , 10, 1347-1358. http://dx.doi.org/10.1515/epoly.2010.10.1.1347.

Murillo, E. A., López, B. L., & Brostow, W. (2011). Synthesis and characterization of novel alkyd-silicone hyperbranched nanoresins with high solid contents. Progress in Organic Coatings, 72(3), 292-298. http://dx.doi.org/10.1016/j.porgcoat.2011.04.019.

Murillo, E. A., Vallejo, P. P., & López, B. L. (2011). Effect of tall oil acids content on the properties of novel hyperbranched alkyd resins. Journal of Applied Polymer Science, 120(6), 3151-3158. http://dx.doi.org/10.1002/app.33502.

Zagar, E., & Zigon, M. (2011). Aliphatic hyperbranched polyesters based on 2, 2- bis(methylol) propionic acid – Determination of structure, solution and bulk properties. Progress in Polymer Science, 36(1), 53-88. http://dx.doi.org/10.1016/j.progpolymsci.2010.08.004.

Zagar, E., Zigon, M., & Podzimek, S. (2006). Characterization of commercial aliphatic hyperbranched polyesters. Polymer, 47(1), 166-175. http://dx.doi.org/10.1016/j.polymer.2005.10.142.

Vallejo, P. P., López, B. L., & Murillo, E. A. (2015). Hyperbranched phenolic-alkyd resins with high solid content. Progress in Organic Coatings, 87, 213-221. http://dx.doi.org/10.1016/j.porgcoat.2015.06.007.

Mesías, R., & Murillo, E. A. (2015). Hyperbranched polyester polyol modified with polylactic acid. Journal of Applied Polymer Science, 132(10), 41589-41597. http://dx.doi.org/10.1002/app.41589.

Liu, X., Khor, S., Petinakis, E., Yu, L., Simon, G., Dean, K., & Bateman, S. (2010). Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochimica Acta, 509(1-2), 147-151. http://dx.doi.org/10.1016/j.tca.2010.06.015.

Obiro, C., Naushad, M., & Suprakas, S. (2014). Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohydrate Polymers , 112, 216-224. PMid:25129738. http://dx.doi.org/10.1016/j.carbpol.2014.05.095.

Racha, A. I., Khalid, L., & Abderrahim, M. (2012). Improvement of thermal stability, rheological and mechanical properties of PLA and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation & Stability, 97(10), 1898-1914. http://dx.doi.org/10.1016/j.polymdegradstab.2012.06.028.

Li, J., Chen, D., Gui, B., Gu, M., & Ren, J. (2011). Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-Aminophthalimide as nucleating agent. Polymer Bulletin, 67(5), 775-791. http://dx.doi.org/10.1007/s00289-010-0419-2.

Jang, W., Shin, B., Lee, T., & Narayan, R. (2007). Thermal properties and morphology of biodegradable PLA/starch compatibilized blends. Journal of Industrial and Engineering Chemistry, 13, 457-464. Retrieved in 2016, July 26, from http://infosys.korea.ac.kr/research/tech/periodicals/view.php?seq=581012.

Ke, T., & Sun, X. (2000). Physical properties of poly(lactic acid) and starch composites with various blending ratios. Cereal Chemistry, 77(6), 761-768. http://dx.doi.org/10.1094/CCHEM.2000.77.6.761.

Huang, M., Yu, J., & Ma, X. (2005). Ethanolamine as a novel plasticizer for thermoplastic starch. Polymer Degradation & Stability, 90(3), 501-507. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.005.

Erdohan, Z., Cam, B., & Turhan, K. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308-315. http://dx.doi.org/10.1016/j.jfoodeng.2013.05.043.

Garlotta, D. (2002). A literature review of poly (lactic acid). Journal of Polymers Environment, 9(2), 63-84. http://dx.doi.org/10.1023/A:1020200822435.

Teixeira, E. M., Campos, A., Marconcini, J. M., Bondancia, T. J., Wood, D., Klamczynski, A., Mattoso, L. H. C., & Glenn, G. M. (2014). Starch/fiber/poly(lactic acid) foam and compressed foam composites. RSC Advances, 4(13), 6616-6623. http://dx.doi.org/10.1039/c3ra47395c.

Lee, S. Y., & Hanna, M. (2008). Preparation and characterization of tapioca starch-poly(lactic acid)-Cloisite NA + nanocomposite foams. Journal of Applied Polymer Science , 110(4), 2337-2344. http://dx.doi.org/10.1002/app.27730.

Muller, C., Pires, A., & Yamashita, F. (2012). Characterization of thermoplastic starch/poly(lactic acid) blends obtained by extrusion and thermopressing. Journal of the Brazilian Chemical Society, 23, 426-434. http://dx.doi.org/10.1590/S0103-50532012000300008

Wang, N., Yu, J., Chang, P., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers , 71(1), 109-118. http://dx.doi.org/10.1016/j.carbpol.2007.05.025.

Ning, W., Xingxiang, Z., Na, H., & Jianming F. (2010). Effects of water on the properties of thermoplastic starch poly(lactic acid) blend containing citric acid. Journal of Thermoplastic Composites Materials, 23, 19-34. http://dx.doi.org/10.1177/0892705709096549.

Uppuluri, S., Morrison, F. A., & Dvornic, P. R. (2000). Rheology of dendrimers. 2. Bulk polyamidoamine dendrimers under steady shear, creep, and dynamic. Macromolecules , 33(7), 2551-2560. http://dx.doi.org/10.1021/ma990634u.

5b7c4b870e88258d4f896e51 polimeros Articles
Links & Downloads


Share this page
Page Sections