Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Sheath-core bicomponent fiber characterization by FT-IR and other analytical methodologies

Marcia Murakoshi Takematsu; Milton Faria Diniz; Elizabeth da Costa Mattos; Rita de Cássia Lazzarini Dutra

Downloads: 0
Views: 77


Abstract: The bicomponent fibers are a special class of fibers that consolidate two polymers in only one fiber in order to explore individual properties of each polymer and can be designed in a spatial configuration that allows the enhancement in application of this material. Thereby, an appropriate characterization of bicomponent fibers is very valuable to process monitoring, quality control and forensic investigation. The sheath-core bicomponent fiber composed by polyethylene (PE), polypropylene (PP) and titanium dioxide (TiO2) was analyzed by Fourier transform infrared (FT-IR) spectroscopy and other analytical methodologies. Results obtained by FT-IR using modern accessories showed efficiency to characterize the polymers of sheath (PE) and core (PP), moreover these polymers were confirmed by DSC (Differential Scanning Calorimetry). The morphology and elemental composition were also studied by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). The thermogravimetric analysis (TGA) and colorimetric analysis allowed characterize and quantify the concentration of TiO2.


bicomponent fiber, characterization, FT-IR, polyethylene, polypropylene


Flynn, K., O’Leary, R., Roux, C., & Reedy, B. J. (2006). Forensic analysis of bicomponent fibers using infrared chemical imaging. Journal of Forensic Sciences , 51(3), 586-596. http://dx.doi.org/10.1111/j.1556-4029.2006.00116.x. PMid:16696706.

Dasdemir, M., Maze, B., Anantharamaiah, N., & Pourdeyhimi, B. (2012). Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. Journal of Materials Science, 47(16), 5955-5969. http://dx.doi.org/10.1007/s10853-012-6499-7.

Andrzejewski, J., Szostak, M., Krasucki, J., Barczewski, M., & Sterzyński, T. (2015). Development and characterization of the injection-molded polymer composites made from bicomponent fibers. Polymer-Plastics Technology and Engineering , 54(1), 33-46. http://dx.doi.org/10.1080/03602559.2014.935414.

Demirci, E., Acar, M., Pourdeyhimi, B., & Silberschmidt, V. V. (2011). Finite element modelling of thermally bonded bicomponent fibre nonwovens: Tensile behavior. Computational Materials Science, 50(4), 1286-1291. http://dx.doi.org/10.1016/j.commatsci.2010.02.039.

McIntyre, J. E. (2004). Synthetic fibres: nylon, polyester, acrylic, polyolefin . Cambridge: Woodhead Publishing Ltd. http://dx.doi.org/10.1201/9780203501702.

Wang, Y., Wang, L., He, X., Zhang, Z., Yu, H., & Gu, J. (2014). Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation. Journal of Colloid and Interface Science , 435, 43-50. http://dx.doi.org/10.1016/j.jcis.2014.08.013. PMid:25217729.

Wu, R. Y., Chu, C. W., Chen, S. H., & Chiang, C. Y. (2010). US Patent 7781059 B2. Taiwan: Far Eastern Textile Ltd. Retrieved in 2016, February 09, from https://www.google.com.ar/patents/US7781059.

Meleiro, P. P., & García-Ruiz, C. (2015). Spectroscopic techniques for the forensic analysis of textile fibers. Applied Spectroscopy Reviews, 51(4), 258-281.

Sionkowska, A. (2011). Current research on the blends of natural and synthetic polymers as new biomaterials: review. Progress in Polymer Science, 36(9), 1254-1276. http://dx.doi.org/10.1016/j.progpolymsci.2011.05.003.

Prati, S., Rosi, F., Sciutto, G., Mazzeo, R., Magrini, D., Sotiropoulou, S., & Van Bos, M. (2012). Evaluation of the effect of six different paint cross section preparation methods on the performances of Fourier Transformed Infrared microscopy in attenuated total reflection mode. Microchemical Journal, 103, 79-89. http://dx.doi.org/10.1016/j.microc.2012.01.007.

Burdet, P., Croxall, S. A., & Midgley, P. A. (2015). Enhanced quantification for 3D SEM–EDS: using the full set of available X-ray lines. Ultramicroscopy, 148, 158-167. http://dx.doi.org/10.1016/j.ultramic.2014.10.010. PMid:25461593.

Jiang, Z., Tijing, L. D., Amarjargal, A., Park, C. H., An, K. J., Shon, H. K., & Kim, C. S. (2015). Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning. Composites. Part B, Engineering, 77, 311-318. http://dx.doi.org/10.1016/j.compositesb.2015.03.067.

Turi, E. A. (1997). Thermal characterization of polymer materials. New York: Academic Press Inc.

Lopez-Molinero, A., Liñan, D., Sipiera, D., & Falcon, R. (2010). Chemometric interpretation of digital image colorimetry. application for titanium determination in plastics. Microchemical Journal, 96(2), 380-385. http://dx.doi.org/10.1016/j.microc.2010.06.013.

Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrometric identification of organic compounds. New York: Wiley.

Hummel, D. O., & School, F. (1984). Atlas of polymer and plastics analysis (Vol. 3). Weinheim: Verlag Chemie.

Chen, X. D., Wang, Z., Liao, Z. F., Mai, Y. K., & Zhang, M. Q. (2007). Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane. Polymer Testing, 26(2), 202-208. http://dx.doi.org/10.1016/j.polymertesting.2006.10.002.

Valentim, A. C. S., Tavares, M. I. B., & Silva, E. O. (2014). Efeito da adição de TiO2 nas propriedades térmicas e na cristalinidade do copolímero de etileno/acetate de vinila. Quimica Nova, 37(2), 255-259.

Arrizabalaga, I., Gomez-Laserna, O., Aramendia, J., Arana, G., & Madariaga, J. M. (2014). Determination of the pigments present in a wallpaper of the middle nineteenth century: The combination of mid-diffuse reflectance and far infrared spectroscopies. Spectrochimica acta. Part A, Molecular and Biomolecular Spectroscopy, 124, 308-314. http://dx.doi.org/10.1016/j.saa.2014.01.017. PMid:24503152.

Abidi, N., Hequet, E., Turner, C., & Sari-Sarraf, H. (2005). FTIR analysis of crosslinked cotton fabric using a ZnSe–universal attenuated total reflectance. Journal of Applied Polymer Science, 96(2), 392-399. http://dx.doi.org/10.1002/app.21449.

Lu, Y., Du, C., Yu, C., & Zhou, J. (2014). Classifying rapeseed varieties using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS). Computers and Electronics in Agriculture, 107, 58-63. http://dx.doi.org/10.1016/j.compag.2014.06.005.

Yang, C. Q. (1992). Infrared Spectroscopic Analysis of Textile Materials Degradation Using Photoacoustic Detection. Industrial & Engineering Chemistry Research , 31(2), 617-621. http://dx.doi.org/10.1021/ie00002a026.

Peltre, C., Bruun, S., Du, C., Thomsen, I. K., & Jensen, L. S. (2014). Assessing soil constituents and labile soil organic carbon by midinfrared photoacoustic spectroscopy. Soil Biology & Biochemistry, 77, 41-50. http://dx.doi.org/10.1016/j.soilbio.2014.06.022.

Bhardwaj, N. K., & Nguyen, K. L. (2007). Photoacoustic Fourier transform infrared spectroscopic study of hydrogen peroxide bleached de-inked pulps. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 301(1-3), 323-328. http://dx.doi.org/10.1016/j.colsurfa.2006.12.077.

5bb66c5d0e88251267bd3c07 polimeros Articles
Links & Downloads


Share this page
Page Sections