Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Preparation and characterization of composites from copolymer styrene-butadiene and chicken feathers

Maria Leonor Mendez-Hernandez; Beatriz Adriana Salazar-Cruz; Jose Luis Rivera-Armenta; Ivan Alziri Estrada-Moreno; Maria Yolanda Chavez-Cinco

Downloads: 0
Views: 69


Abstract: Over five million tons of chicken feathers (CF) are generated all over the world by the poultry industry, with an immense potential to exploit. Keratin is an abundant protein found in chicken feathers that offers excellent thermal properties and it is durable, insoluble in organic solvents and chemically unreactive. Elastomers are materials with a wide application range, for instance, adhesives, shoe soles, plastic modifiers, tire industry, sealants, among others. However, it is necessary to improve their properties and mechanical performance at elevated temperatures. A good path to do so is to combine the elastomer with CF to obtain materials with enhanced properties. In present work, a composite based on styrene-butadiene (SB) elastomer and CF was prepared by means of melt mixing. Composites were characterized by FTIR, DSC, DMA and X ray diffraction techniques. The results show that there is an increase in stiffness of SB/CF composites compared with pure elastomer.


chicken feather, melting mixing, thermal properties, elastomer


Muy Interesante. (2016). Retrieved in 2016, September 30, from http://www.muyinteresante.es/innovacion/articulo/un-biomaterial-hecho-con-plumasde-pollo

Martinez-Hernandez, A. L., Velasco-Santos, C., De Icaza, M., & Castano, V. M. (2005). Microstructural characterisation of keratin fibres from chicken feathers. International Journal of Environment and Pollution, 23(2), 162-178. http://dx.doi.org/10.1504/IJEP.2005.006858.

Jiménez-Cervantes Amieva, E., Velasco-Santos, C., Martínez-Hernández, A. L., Rivera-Armenta, J. L., Mendoza-Martínez, A. M., & Castaño, V. M. (2015). Composites from chicken feathers quill and recycled polypropylene. Journal of Composite Materials, 49(3), 275-283. http://dx.doi.org/10.1177/0021998313518359.

Tran, C. D., Prosenc, F., Franko, M., & Benzi, G. (2016). Synthesis, structure and antimicrobial property of green composites from cellulose, wool, hair and chicken feather. Carbohydrate Polymers, 151(20), 1269-1276. http://dx.doi.org/10.1016/j.carbpol.2016.06.021. PMid:27474680.

Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357-401. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.

Zha, W., Han, C. D., Moon, H. C., Han, S. H., Lee, D. H., & Kim, J. K. (2010). Exfoliation of organoclay nanocomposites based on polystyrene-block-polyisopreneblock- poly (2-vinylpyridine) copolymer: solution blending versus melt blending. Polymer, 51(4), 936-952. http://dx.doi.org/10.1016/j.polymer.2009.12.030.

Senoz, E., Wool, R. P., McChalicher, C. W., & Hong, C. K. (2012). Physical and chemical changes in feather keratin during pyrolysis. Polymer Degradation & Stability , 97(3), 297-307. http://dx.doi.org/10.1016/j.polymdegradstab.2011.12.018.

Salazar-Cruz, B. A., Rivera-Armenta, J. L., Garcia-Alamilla, R., Mendoza-Martinez, A. M., Esquivel de la Garza, A., & Moctezume Espiricueto, S. (2015). Evaluacion termica del curado de adhesivos base SBR usando peroxido de dicumilo. Química Nova , 38(5), 651-656. http://dx.doi.org/10.5935/0100-4042.20150067.

Brebu, M., & Spiridon, I. (2011). Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis, 91(2), 288-295. http://dx.doi.org/10.1016/j.jaap.2011.03.003.

Prochon, M., Janowska, G., Przepiorkowska, A., & Kucharska-Jastrzabek, A. (2012). Thermal properties and combustibility of elastomer-protein composites. Journal of Thermal Analysis and Calorimetry, 109(3), 1563-1570. http://dx.doi.org/10.1007/s10973-011-2028-1.

Hill, P., Brantley, H., & Van Dyke, M. (2010). Some properties of keratin biomaterials: kerateines. Biomaterials, 31(4), 585-593. http://dx.doi.org/10.1016/j.biomaterials.2009.09.076. PMid:19822360.

Winandy, J. E., Muehl, J. H., Micales, J. A., Raina, A., & Schmidt, W. (2003). Potential of chicken feather fibre in wood MDF composites. In Proceedings of the EcoComp 2003: 2nd International Conference on Eco-composites (pp. 1-6). London: Queen Mary University of London, European Society for Composite Materials. Retrieved in 2016, September 30, from https://www.fpl.fs.fed.us/documnts/pdf2003/winan03d.pdf

Janowska, G., Kucharska-Jastrzabek, A., Prochon, M., & Przepiorkowska, A. (2013). Thermal properties and cmobustibility of elastomer-protein composites. Part II: composites NBR-keratin. Journal of Thermal Analysis and Calorimetry, 113(2), 933-938. http://dx.doi.org/10.1007/s10973-012-2796-2.

Martínez-Hernández, A. L., Velasco-Santos, C., de-Icaza, M., & Castaño, V. M. (2007). Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites. Part B, Engineering , 38(3), 405-410. http://dx.doi.org/10.1016/j.compositesb.2006.06.013.

Yin, X.-C., Li, F.-Y., He, Y.-F., Wang, Y., & Wang, R.-M. (2013). Study on effective extraction of chicken feather keratins and their films for controlling drug reléase. Biomaterials Science, 1(5), 528-536. http://dx.doi.org/10.1039/c3bm00158j.

De León Almazán, C. M., Chávez-Cinco, M. Y., Páramo-García, U., Mendoza-Martínez, A. M., Estrada-Moreno, I. A., & Rivera-Armenta, J. L. (2016). PAni/SBR composites as anticorrosive coatings for carbon steel I: chemical, morphological and superficial characterization. Polymer Bulletin, 73(6), 1595-1605. http://dx.doi.org/10.1007/s00289-015-1565-3.

Edwards, H. G. M., Hunt, D. E., & Sibley, M. G. (1998). FT-Raman spectroscopic study of keratotic materials: horn, hoof, and totoiseshell. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 54(5), 745-757. http://dx.doi.org/10.1016/S1386-1425(98)00013-4.

Barone, J. R., & Schmidt, W. F. (2005). Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology, 65(2), 173-181. http://dx.doi.org/10.1016/j.compscitech.2004.06.011.

Reddy, N., Hu, C., Yan, K., & Yang, Y. (2011). Thermoplastic films from cyanoethylated chicken feathers. Materials Science and Engineering C, 31(8), 1706-1710. http://dx.doi.org/10.1016/j.msec.2011.07.022.

Cheng, S., Lau, K. T., Liu, T., Zhao, Y., Lam, P. M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites. Part B, Engineering, 40(7), 650-654. http://dx.doi.org/10.1016/j.compositesb.2009.04.011.

Ma, B., Qiao, X., Hou, X., & Yang, Y. (2016). Pure keratin membrane and fibers from chicken feather. International Journal of Biological Macromolecules, 89, 614-621. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.039. PMid:27180293.

Khosa, M. A., Wu, J., & Ullah, A. (2013). Chemical modification, characterization, and application of chicken feathers as novel biosorbents. Royal Society of Chemistry Advances, 3(43), 20800-20810. http://dx.doi.org/10.1039./C3RA43787F.

5bb670740e8825356dbd3c07 polimeros Articles
Links & Downloads


Share this page
Page Sections