Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers

Gulão, Eliana da Silva; Souza, Clitor Junior Fernandes de; Costa, Angélica Ribeiro da; Rocha-Leão, Maria Helena Miguez da; Garcia-Rojas, Edwin Elard

Downloads: 0
Views: 30


Abstract: Proteins are frequently used as emulsifiers and stabilizers. In this work, two proteins with different isoelectric points were used: lactoferrin and ovalbumin. Solutions containing different proteins ratios, with different pH values, were stored for 7 days at 25 °C to analyze the system stability. Systems containing 3% w/v lactoferrin remained stable at all pH values studied, while systems containing 1% w/v ovalbumin remained stable only at a high pH value (8.0). Emulsions containing a mixture of proteins remained stable at a pH between the isoelectric points of the two proteins, which was attributed to an electrostatic bond because of the opposite charges of proteins at this pH. During the analysis of rheological properties, it was possible to observe a non-Newtonian behavior of the emulsions, using the models of Carreau and Cross to describe the pseudoplastic behavior of suspensions. This study provides important information for the use of functional ingredients.


emulsion stability; oil-in-water emulsion; polymers; emulsifiers


Yadav, M. P., Parris, N., Johnston, D. B., Onwulata, C. I., & Hicks, K. B. (2010). Corn fiber gum and milk protein conjugates with improved emulsion stability. Carbohydrate Polymers81(2), 476-483. http://dx.doi.org/10.1016/j.carbpol.2010.03.003. 

Tokle, T., & McClements, D. J. (2011). Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: effects of pH, salt and heating. Food Hydrocolloids , 25(5), 976-982. http://dx.doi.org/10.1016/j.foodhyd.2010.09.012. 

Tian, S., Chen, J. I. E., & Small, D. M. (2011). Enhancement of solubility and emulsifying properties of soy protein isolates by glucose conjugation. Journal of Food Processing and Preservation35(1), 80-95. http://dx.doi.org/10.1111/j.1745-4549.2009.00456.x. 

McCarthy, N. A., Kelly, A. L., O’Mahony, J. A., & Fenelon, M. A. (2014). Sensitivity of emulsions stabilised by bovine β-casein and lactoferrin to heat and CaCl 2Food Hydrocolloids35(1), 420-428. http://dx.doi.org/10.1016/j.foodhyd.2013.06.021. 

 Xu, K., & Yao, P. (2009). Stable oil-in-water emulsions prepared from soy protein-dextran conjugates. Langmuir25(17), 9714-9720. http://dx.doi.org/10.1021/la900960g. PMid:19485394. 

Wilde, P., Mackie, A., Husband, F., Gunning, P., & Morris, V. (2004). Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science108-109, 63-71. http://dx.doi.org/10.1016/j.cis.2003.10.011. PMid:15072929. 

Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., & Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control26(2), 387-392. http://dx.doi.org/10.1016/j.foodcont.2012.01.046.

González-Chávez, S. A., Arevalo-Gallegos, S., & Rascon-Cruz, Q. (2009). Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents33(4), 301-308. http://dx.doi.org/10.1016/j.ijantimicag.2008.07.020. PMid:18842395. 

Öztas, Y. E., & Özgünes, N. (2005). Lactoferrin: a multifunction protein. Advances in Molecular Medicine25(4), 149-164. 

David-Birman, T., Mackie, A., & Lesmes, U. (2013). Impact of dietary fibers on the properties and proteolytic digestibility of lactoferrin nano-particles. Food Hydrocolloids , 31(1), 33-41. http://dx.doi.org/10.1016/j.foodhyd.2012.09.013. 

Figueiredo, F. G., Mantovani, R. A., Consoli, L., Hubinger, M. D., & Cunha, R. L. (2017). Structural and emulsifying properties of sodium caseinate and lactoferrin influenced by ultrasound process. Food Hydrocolloids63(1), 178-188. http://dx.doi.org/10.1016/j.foodhyd.2016.08.038. 

Liu, F., Wang, D., Xu, H., Sun, C., & Gao, Y. (2016). Physicochemical properties of β-carotene emulsions stabilized by chlorogenic acid–lactoferrin–glucose/polydextrose conjugates. Food Chemistry196(1), 338-346. http://dx.doi.org/10.1016/j.foodchem.2015.09.047. PMid:26593499.

Seta, L., Baldino, N., Gabriele, D., Lupi, F. R., & de Cindio, B. (2012). The effect of surfactant type on the rheology of ovalbumin layers at the air/water and oil/water interfaces. Food Hydrocolloids29(2), 247-257. http://dx.doi.org/10.1016/j.foodhyd.2012.03.012. 

Croguennec, T., Renault, A., Beaufils, S., Dubois, J. J., & Pezennec, S. (2007). Interfacial properties of heat-treated ovalbumin. Journal of Colloid and Interface Science , 315(2), 627-636. http://dx.doi.org/10.1016/j.jcis.2007.07.041. PMid:17707856. 

Niu, F., Zhou, J., Niu, D., Wang, C., Liu, Y., Su, Y., & Yang, Y. (2015). Synergistic effects of ovalbumin/gum arabic complexes on the stability of emulsions exposed to environmental stress. Food Hydrocolloids47(1), 14-20. http://dx.doi.org/10.1016/j.foodhyd.2015.01.002. 

Niu, F., Pan, W., Su, Y., & Yang, Y. (2016). Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic. Food Chemistry , 212(1), 138-145. http://dx.doi.org/10.1016/j.foodchem.2016.05.172. PMid:27374517. 

Rao, J., & McClements, D. J. (2012). Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chemistry134(2), 749-757. http://dx.doi.org/10.1016/j.foodchem.2012.02.174. PMid:23107687. 

Villarino, B. J., Dy, L. M., & Lizada, M. C. C. (2007). Descriptive sensory evaluation of virgin coconut oil and refined, bleached and deodorized coconut oil. Lebensmittel-Wissenschaft + Technologie40(2), 193-199. http://dx.doi.org/10.1016/j.lwt.2005.11.007. 

Ng, S. P., Lai, O. M., Abas, F., Lim, H. K., & Tan, C. P. (2014). Stability of a concentrated oil-in-water emulsion model prepared using palm olein-based diacylglycerol/virgin coconut oil blends: effects of the rheological properties, droplet size distribution and microstructure. Food Research International64(1), 919-930. http://dx.doi.org/10.1016/j.foodres.2014.08.045. PMid:30011735. 

Bengoechea, C., Jones, O. G., Guerrero, A., & McClements, D. J. (2011). Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids25(5), 1227-1232. http://dx.doi.org/10.1016/j.foodhyd.2010.11.010. 

Tokle, T., Decker, E. A., & McClements, D. J. (2012). Utilization of interfacial engineering to produce novel emulsion properties: pre-mixed lactoferrin/β-lactoglobulin protein emulsifiers. Food Research International49(1), 46-52. http://dx.doi.org/10.1016/j.foodres.2012.07.054. 

Ye, A., & Singh, H. (2006). Adsorption behaviour of lactoferrin in oil-in-water emulsions as influenced by interactions with beta-lactoglobulin. Journal of Colloid and Interface Science295(1), 249-254. http://dx.doi.org/10.1016/j.jcis.2005.08.022. PMid:16139288. 

Demetriades, K., Coupland, J., & McClements, D. J. (1997). Physicochemical properties of whey protein‐stabilized emulsions as affected by heating and ionic strength. Journal of Food Science62(3), 462-467. http://dx.doi.org/10.1111/j.1365-2621.1997.tb04407.x. 

Conesa, C., Rota, C., Castillo, E., Perez, M. D., Calvo, M., & Sánchez, L. (2010). Effect of heat treatment on the antibacterial activity of bovine lactoferrin against three foodborne pathogens. International Journal of Dairy Technology63(2), 209-215. http://dx.doi.org/10.1111/j.1471-0307.2010.00567.x. 

Van Vliet, T., Lakemond, C. M. M., & Visschers, R. W. (2004). Rheology and structure of milk protein gels. Current Opinion in Colloid & Interface Science , 9(5), 298-304. http://dx.doi.org/10.1016/j.cocis.2004.09.002. 

Sun, X. D., & Arntfield, S. D. (2010). Gelation properties of salt-extracted pea protein induced by heat treatment. Food Research International43(2), 509-515. http://dx.doi.org/10.1016/j.foodres.2009.09.039. 

Ching, S. H., Bansal, N., & Bhandari, B. (2016). Rheology of emulsion-filled alginate microgel suspensions. Food Research International80(1), 50-60. http://dx.doi.org/10.1016/j.foodres.2015.12.016. 

Yang, D., Venev, S. V., Palyulin, V. V., & Potemkin, I. I. (2011). Nematic ordering of rigid rod polyelectrolytes induced by electrostatic interactions: effect of discrete charge distribution along the chain. The Journal of Chemical Physics134(7), 074901. http://dx.doi.org/10.1063/1.3554746. PMid:21341872. 

Murillo-Martínez, M. M., Pedroza-Islas, R., Lobato-Calleros, C., Martínez-Ferez, A., & Vernon-Carter, E. J. (2011). Designing W1/O/W2 double emulsions stabilized by proteine polysaccharide complexes for producing edible films: rheological, mechanical and water vapour properties. Food Hydrocolloids25(4), 577-585. http://dx.doi.org/10.1016/j.foodhyd.2010.06.015. 

Santos, J., Calero, N., Guerrero, A., & Munoz, J. (2015). Relationship of rheological and microstructural properties with physical stability of potato protein-based emulsions stabilized by guar gum. Food Hydrocolloids44(1), 109-114. http://dx.doi.org/10.1016/j.foodhyd.2014.09.025. 

Sun, C., & Gunasekaran, S. (2009). Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids23(1), 165-174. http://dx.doi.org/10.1016/j.foodhyd.2007.12.006. 

5c55aa150e88256301b25bb4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections