Polímeros: Ciência e Tecnologia
https://revistapolimeros.org.br/article/doi/10.1590/0104-1428.07016
Polímeros: Ciência e Tecnologia
Original Article

Analysis of chemical polymerization between functionalized MWCNT and poly(furfuryl alcohol) composite

Elilton Rodrigues Edwards; Silvia Sizuka Oishi; Edson Cocchieri Botelho

Downloads: 0
Views: 1104

Abstract

Abstract: In this study, the chemical interaction between functionalized carbon nanotuboes with carboxyl groups (CNT-f) and the subsequent addition of furfuryl alcohol (FA) and mixture with poly(furfuryl alcohol) (PFA) resin was evaluated. The FA with CNT-f was mixed in PFA resin to facilitate the chemical interaction of CNTs. The morphological and chemical interaction were studied by Transmission Electron Microcopies (MET), FTIR analyses, Raman Spectroscopy, viscosimetry and X-ray photoelectron spectroscopy (XPS). It was observed that a chemical interaction occurs through the opening of the hydroxyl polymer chain with a subsequent output of one water molecule. This interaction was evident from the FTIR and XPS data of the PFA composites. In this way, the mixture of functionalized carbon nanotubes with carboxyl groups in the FA, before adding this reinforcement into the PFA resin, can be considered a good procedure in order to obtain an appropriate chemical interaction between the CNT and PFA resin.

Keywords

nanostructured composite, chemical properties, surface analysis, cure reaction

References

Gandini, A. (2008). Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules, 41(24), 9491-9504. http://dx.doi.org/10.1021/ma801735u.

Alimukhamedov, M. G., & Magrupov, F. A. (2007). Kinetics of homopolycondensation of furfuryl alcohol. Polymer Science Series B, 49(7), 167-171. http://dx.doi.org/10.1134/S1560090407070019.

Wang, H., & Yao, J. (2006). Use of poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites. Industrial & Engineering Chemistry Research , 45(19), 6393-6404. http://dx.doi.org/10.1021/ie0602660.

Men, X. H., Zhang, Z. Z., Song, H. J., Wang, K., & Jiang, W. (2008). Functionalization of carbon nanotubes to improve the tribological properties of poly(furfurylalcohol) composite coatings. Composites Science and Technology, 68(3-4), 1042-1049. http://dx.doi.org/10.1016/j.compscitech.2007.07.008.

Xie, X. L., Mai, Y. W., & Zhou, X. P. (2006). Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials Science and Engineering R Reports , 49(4), 89-112. http://dx.doi.org/10.1016/j.mser.2005.04.002.

Ma, P. C., Siddiquia, N. A., Naromb, G., & Kima, J. K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites. Part A, Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

Choura, M., Belgacem, N. M., & Gandini, A. (1996). Acid-catalyzed polycondensation of furfuryl alcohol: mechanisms of chromophore formation and cross-linking. Macromolecules , 29(11), 3839-3850. http://dx.doi.org/10.1021/ma951522f.

Bertarione, S., Bonino, F., Cesano, F., Damin, A., Scarano, D., & Zecchina, A. (2008). Furfuryl alcohol polymerization in H-Y confined spaces: reaction mechanism and structure of carbocationic intermediates. The Journal of Physical Chemistry B , 112(9), 2580-2589. PMid:18266350. http://dx.doi.org/10.1021/jp073958q.

Zhang, S., & Solomon, D. H. (1997). The reaction of furfuryl alcohol resins with hexamethylenetetramine: a 13C and 15N high-resolution solid-state NMR study. Journal of Polymer Science. Part B, Polymer Physics, 35(14), 2233-2243. http://dx.doi.org/10.1002/(SICI)1099-0488(199710)35:14<2233::AID-POLB4>3.0.CO;2-X.

González, R., Figuero, J. M., & González, H. (2002). Furfuryl alcohol polymerisation by iodine in methylene chloride. European Polymer Journal , 38(2), 287-297. http://dx.doi.org/10.1016/S0014-3057(01)00090-8.

Antunes, E. F., Almeida, E. C., Rosa, C. B. F., Medeiros, L. I., Pardini, L. C., Massi, M., & Corat, E. J. (2010). Thermal annealing and electrochemical purification of multi walled carbon nanotubes produced by camphor/ferrocene mixtures. Journal of Nanoscience and Nanotechnology, 10(2), 1296-1303. PMid:20352791. http://dx.doi.org/10.1166/jnn.2010.1830.

Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., & Galiotis, C. (2008). Chemical oxidation of multiwalled carbon nanotubes. Carbon, 46(6), 833-840. http://dx.doi.org/10.1016/j.carbon.2008.02.012.

Edwards, E. R., Antunes, E. F., Botelho, E. C., Baldan, M. R., & Corat, E. J. (2011). Evaluation of residual iron in carbon nanotubes purified by acid treatments. Applied Surface Science, 258(2), 641-648. http://dx.doi.org/10.1016/j.apsusc.2011.07.032.

Bower, C., Kleinhammes, A., Wu, Y., & Zhou, O. (1998). Intercalation and partial exfoliation of single-walled carbon nanotubes by nitric acid. Chemical Physics Letters , 288(2-4), 481-486. http://dx.doi.org/10.1016/S0009-2614(98)00278-4.

Gonzalez, R., Figueroa, J. M., & Gonzalez, H. (2001). Furfuryl alcohol polymerization by iodine in methylene chloride. European Polymer Journal, 38(2), 287-297. http://dx.doi.org/10.1016/S0014-3057(01)00090-8.

Bertarione, S., Bonino, F., Cesano, F., Jain, E., Zanetti, M., Scarano, D., & Zecchina, A. (2009). Micro-FTIR and micro-raman studies of a carbon film prepared from furfuryl alcohol polymerization. The Journal of Physical Chemistry B, 113(31), 10571-10574. PMid:19719270. http://dx.doi.org/10.1021/jp9050534.

Shindo, A., & Izumino, K. (1994). Structural variation during pyrolysis of furfuryl alcohol and furfural-furfuryl alcohol resins. Carbon N Y, 32(7), 1233-1243. http://dx.doi.org/10.1016/0008-6223(94)90107-4.

Oishi, S. S., Rezende, M. C., Origo, F. D., Damião, A. J., & Botelho, E. C. (2013). Viscosity, pH, and moisture effect in the porosity of poly(furfuryl alcohol). Journal of Applied Polymer Science, 128(3-5), 1680-1686. http://dx.doi.org/10.1002/app.38675.

Barsberg, S., & Thygesen, L. G. (2009). Poly(furfuryl alcohol) formation in neat furfuryl alcohol and in cymene studied by ATR-IR spectroscopy and density functional theory (B3LYP) prediction of vibrational bands. Vibrational Spectroscopy, 49(1), 52-63. http://dx.doi.org/10.1016/j.vibspec.2008.04.013.

Larciprete, R., Gardonio, S., Petaccia, L., & Lizzit, S. (2009). Atomic oxygen functionalization of double walled carbon nanotubes. Carbon, 47(11), 2579-2589. http://dx.doi.org/10.1016/j.carbon.2009.05.008.

Kónya, Z., Vesselényi, I., Kiss, J., Farkas, A., Oszkó, A., & Kiricsi, I. (2004). XPS study of multiwall carbon nanotube synthesis on Ni-, V-, and Ni, V-ZSM-5 catalysts. Applied Catalysis A, General, 260(1), 55-61. http://dx.doi.org/10.1016/j.apcata.2003.10.042.

Shulga, Y. M., Tien, T. C., Huang, C. C., Lo, S. C., Muradyan, V. E., Polyakova, N. V., Ling, Y. C., Loutfy, R. O., & Moravsky, A. P. (2007). XPS study of fluorinated carbon multi-walled nanotubes. Journal of Electron Spectroscopy and Related Phenomena, 160(1-3), 22-28. http://dx.doi.org/10.1016/j.elspec.2007.06.002.

Maruyama, T., Bang, H., Fujita, N., Kawamura, Y., Naritsuka, S., & Kusunoki, M. (2007). STM and XPS studies of early stages of carbon nanotube growth by surface decomposition of 6H–SiC(000-1) under various oxygen pressures. Diamond and Related Materials, 16(4-7), 1078-1081. http://dx.doi.org/10.1016/j.diamond.2007.01.004.

Naeimi, H., Mohajeri, A., Moradi, L., & Rashidi, A. M. (2009). Efficient and facile one pot carboxylation of multi-walled carbon nanotubes by using oxidation with ozone under mild conditions. Applied Surface Science, 256(3), 631-635. http://dx.doi.org/10.1016/j.apsusc.2009.08.094.
 

5b7c49c70e88253a47896e53 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections