Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Influence of Moringa oleifera derivates in blends of PBAT/PLA with LDPE

Cristiane Medina Finzi-Quintão; Kátia Monteiro Novack; Ana Cláudia Bernardes-Silva; Thais Dhayane Silva; Lucas Emiliano Souza Moreira; Luiza Eduarda Moraes Braga

Downloads: 0
Views: 89


Abstract: There are few studies about Moringa oleifera derivates in polymer developments where vegetable oil was used as a plasticizer and a biodegrading agent. The polymerization of moringa oil (MO) was carried out assisted by microwaves without catalysts presence. There aren’t studies about the polymerization of MO using microwaves technology. Moringa’s oil and its polymer (PMO) were used as a biodegrading agent for mixtures of low density polyethylene (LDPE) with poly(butylene adipate-co-terephthalate)/poly(lactic acid) (PBAT/PLA). The mixtures producted films that were characterized and submitted to biodegradation analysis in order to discuss the influence of moringa components. Results showed that both moringa components improved thermal properties and reduced the crystalline phase of the mixture. The addition of PMO had improved the biodegradation capacity up to five times while MO had improved it up to three times. The results showed the greatest influence of moringa components on biodegradation of mixtures with cited polymers.


biodegradation, biopolymers, microwaves, Moringa oleifera


Aguilera, A. F., Tolvanen, P., Eränen, K., Leveneur, S., & Salmi, T. (2016). Epoxidation of oleic acid under conventional heating and microwave radiation. Chemical Engineering and Processing: Process Intensification, 102, 70-87. http://dx.doi.org/10.1016/j.cep.2016.01.011.

Ahid Nunes, T. C., Barros, H. D., Barbosa, C. R. M., Barbosa, F. M., Filgueira, P. P. A., & Pannirselvam, P. V. (2010). Tecnologia de Moringa oleifera como alimento funcional para a saude humana e animal. In Anais do II Encontro Nacional de Moringa (p. 7). Aracaju: Rede Sergipe Rede Petróleo e Gás de Sergipe, Rede Sergipe Biodiesel.

Al-Itry, R., Lamnawar, K., & Maazouz, A. (2014). Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheologica Acta, 53(7), 501-517. http://dx.doi.org/10.1007/s00397-014-0774-2.

Poiana, M.-A., Mousdis, G., Alexa, E., Moigradean, D., Negrea, M., & Mateescu, C. (2012). Application of FTIR spectroscopy in the assessment of olive oil adulteration. Journal of Agroalimentary Processes and Technologies, 18(4), 277-282. Retrieved in 2017, May 31, from https://www.journal-of-agroalimentary.ro/Journal-of-Agroalimentary-Processes-and-Technologies-Article_Db742.html

Andrade, G. F., Melo, T. M. S., Guedes, C. D., Novack, K. M., dos Santos, R. C., & Silva, M. E. (2011). Biological evaluation of crude and degummed oil from Moringa oleifera seeds. Brazilian Archives of Biology and Technology, 54(5), 1003-1006. http://dx.doi.org/10.1590/S1516-89132011000500018.

Bhutada, P. R., Jadhav, A. J., Pinjari, D. V., Nemade, P. R., & Jain, R. D. (2016). Solvent assisted extraction of oil from Moringa oleifera Lam. seeds. Industrial Crops and Products, 82, 74-80. http://dx.doi.org/10.1016/j.indcrop.2015.12.004.

Bicalho, L. A., Novack, K. M., & Melo, T. M. S. (2011). Avaliação da biodegradação de filmes de polietileno reciclado dopados com óleo de Moringa oleigera. In Anais do 11 Congresso Brasileiro de Polimeros (p. 1782-1790). Campos do Jordão: ABPol.

Castro-Aguirre, E., Auras, R., Selke, S., Rubino, M., & Marsh, T. (2017). Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation & Stability, 137, 251-271. http://dx.doi.org/10.1016/j.polymdegradstab.2017.01.017.

Da Porto, C., Decorti, D., & Natolino, A. (2016). Microwave pretreatment of Moringa oleifera seed: effect on oil obtained by pilot-scale supercritical carbon dioxide extraction and Soxhlet apparatus. The Journal of Supercritical Fluids , 107, 38-43. http://dx.doi.org/10.1016/j.supflu.2015.08.006.

Dou, H., & Kister, J. (2016). Research and development on Moringa oleifera : comparison between academic research and patents. World Patent Information , 47, 21-33. http://dx.doi.org/10.1016/j.wpi.2016.09.001.

Dubey, K. A., Chaudhari, C. V., Raje, N., Panickar, L., Bhardwaj, Y. K., & Sabharwal, S. (2012). Radiation-assisted morphology modification of LDPE/TPS Blends: a study on starch degradation-processing- morphology correlation. Polymers & Polymer Composites , 124, 3501-3510. http://dx.doi.org/10.1002/app.

Fakayode, O. A., & Ajav, E. A. (2016). Process optimization of mechanical oil expression from Moringa (Moringa oleifera) seeds. Industrial Crops and Products, 90, 142-151. http://dx.doi.org/10.1016/j.indcrop.2016.06.017.

Finzi-Quintao, C. M., Novack, K. M., & Bernardes-Silva, A. C. (2016). Identification of biodegradable and oxo-biodegradable plastic bags samples composition. Macromolecular Symposia, 367(1), 9-17. http://dx.doi.org/10.1002/masy.201500156.

Gaines, T. W., Williams, K. R., Wagener, K. B., & Rojas, G. (2015). Microwave-assisted ADMET polymerization. Tetrahedron Letters, 56(25), 3923-3927. http://dx.doi.org/10.1016/j.tetlet.2015.04.122.

Gillie, J. K., Hochlowski, J., & Arbuckle-Keil, G. (2000). Infrared spectroscopy. Analytical Chemistry, 72(12), 71R-79R. http://dx.doi.org/10.1021/a1000006w. PMid:10882198.

Gopalakrishnan, L., Doriya, K., & Kumar, D. S. (2016). Moringa oleifera : a review on nutritive importance and its medicinal application. Food Science and Human Wellness, 5(2), 1-8. http://dx.doi.org/10.1016/j.fshw.2016.04.001.

Harding, K. G., Dennis, J. S., von Blottnitz, H., & Harrison, S. T. L. (2007). Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-hydroxybutyric acid using life cycle analysis. Journal of Biotechnology, 130(1), 57-66. http://dx.doi.org/10.1016/j.jbiotec.2007.02.012. PMid:17400318.

Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215-1233. http://dx.doi.org/10.1016/j.eurpolymj.2013.01.019.

Jia, P. Y., Bo, C. Y., Zhang, L. Q., Hu, L. H., Zhang, M., & Zhou, Y. H. (2015). Synthesis of castor oil based plasticizers containing flame retarded group and their application in poly (vinyl chloride) as secondary plasticizer. Journal of Industrial and Engineering Chemistry, 28, 217-224. http://dx.doi.org/10.1016/j.jiec.2015.02.017.

Jovanovic, J., & Adnadjevic, B. (2007). Comparison of the kinetics of conventional and microwave methyl methacrylate polymerization jelena. Journal of Applied Polymer Science, 104(3), 1775-1782. http://dx.doi.org/10.1002/app.25827.

Kampars, V., Kronberga, S., Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., & Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573-574, 459-465. http://dx.doi.org/10.1016/j.aca.2006.05.034. PMid:17723561.

Leveneur, S., Ledoux, A., Estel, L., Taouk, B., & Salmi, T. (2014). Epoxidation of vegetable oils under microwave irradiation. Chemical Engineering Research & Design , 92(8), 1495-1502. http://dx.doi.org/10.1016/j.cherd.2014.04.010.

Mekewi, M. A., Ramadan, A. M., ElDarse, F. M., Abdel Rehim, M. H., Mosa, N. A., & Ibrahim, M. A. (2017). Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access. Egyptian Journal of Petroleum , 6(1), 9-15. http://dx.doi.org/10.1016/j.ejpe.2016.02.002.

Melo, T. M. S., Novack, K. M., & Leandro, C. (2011). Termopolimerização do óleo de Moringa oleifera. In Anais do 11 Congresso Brasileiro de Polimeros. Campos do Jordão: ABPol.

Miao, S., Wang, P., Su, Z., & Zhang, S. (2014). Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomaterialia, 10(4), 1692-1704. http://dx.doi.org/10.1016/j.actbio.2013.08.040. PMid:24012607.

Nguyen, N. T., Greenhalgh, E., Kamaruddin, M. J., El harfi, J., Carmichael, K., Dimitrakis, G., Kingman, S. W., Robinson, J. P., & Irvine, D. J. (2014). Understanding the acceleration in the ring-opening of lactones delivered by microwave heating. Tetrahedron , 70(4), 996-1003. http://dx.doi.org/10.1016/j.tet.2013.11.031.

Karak, N. (2012). Vegetable oil-based polymers: properties, processing and applications . Philadelphia: Woodhead Publising.

Rashed, M. M., Kalam, M. A., Masjuki, H. H., Mofijur, M., Rasul, M. G., & Zulkifli, N. W. M. (2016). Performance and emission characteristics of a diesel engine fueled with palm, jatropha, and moringa oil methyl ester. Industrial Crops and Products , 79, 70-76. http://dx.doi.org/10.1016/j.indcrop.2015.10.046.

Rouane, A., Zerrouki, D., & Benaniba, M. T. (2014). Effect of sunflower oil on the mechanical permanence and the thermal properties of poly (vinyl chloride). Energy Procedia , 50, 285-289. http://dx.doi.org/10.1016/j.egypro.2014.06.035.

Sander, M. M., Nicolau, A., Guzatto, R., & Samios, D. (2012). Plasticiser effect of oleic acid polyester on polyethylene and polypropylene. Polymer Testing, 31(8), 1077-1082. http://dx.doi.org/10.1016/j.polymertesting.2012.08.006.

Schlemmer, D., Sales, M. J. A., & Resck, I. S. (2010). Preparação, caracterização e degradação de blendas PS/TPS usando glicerol e óleo de buriti como plastificantes. Polímeros: Ciência e Tecnologia, 20(1), 6-13. http://dx.doi.org/10.1590/S0104-14282010005000002.

Schlemmer, D., Sales, M. J. A., & Resck, I. S. (2009). Degradation of different polystyrene/thermoplastic starch blends buried in soil. Carbohydrate Polymers, 75(1), 58-62. http://dx.doi.org/10.1016/j.carbpol.2008.06.010.

Sikorska, W., Musiol, M., Nowak, B., Pajak, J., Labuzek, S., Kowalczuk, M., & Adamus, G. (2015). Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. International Biodeterioration & Biodegradation, 101, 32-41. http://dx.doi.org/10.1016/j.ibiod.2015.03.021.

Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastics: a review. Journal of Biochemical Technology, 6(1), 952-961. http://dx.doi.org/10.1504/IJEP.2008.016895.

Tabasi, R. Y., & Ajji, A. (2015). Selective degradation of biodegradable blends in simulated laboratory composting. Polymer Degradation & Stability, 120, 435-442. http://dx.doi.org/10.1016/j.polymdegradstab.2015.07.020.

Vieira, M. G. A., Da Silva, M. A., Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: a review. European Polymer Journal, 47(3), 254-263. http://dx.doi.org/10.1016/j.eurpolymj.2010.12.011.

Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A., & Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Analytica Chimica Acta, 573-574, 459-465. http://dx.doi.org/10.1016/j.aca.2006.05.034. PMid:17723561.

Xia, L., Cao, D., Zhang, H., & Guo, Y. (2016). Study on the classical and rheological properties of castor oil-polyurethane pre polymer (C-PU) modified asphalt. Construction & Building Materials, 112, 949-955. http://dx.doi.org/10.1016/j.conbuildmat.2016.02.207.

Yeh, J.-T., Tsou, C.-H., Huang, C.-Y., Chen, K.-N., Wu, C.-S., Chai, W.-L., & Lv, J. (2010). Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Journal of Applied Polymer Science, 116(2), 680-687. http://dx.doi.org/10.1002/app.

5bb66fe90e8825686bbd3c08 polimeros Articles
Links & Downloads


Share this page
Page Sections