Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of the application of cashew gum as an excipient to produce tablets

Ana Paula de Sá Pinto; Kattya Giselle de Holanda e Silva; Claudia Regina Elias Mansur

Downloads: 0
Views: 73


Abstract: Cashew gum is extracted from the exudate of the giant cashew tree (Anacardium occidentale L.). The objective of this work was to study the extraction and purification of cashew gum through experiments to characterize its structures and physicochemical and thermal properties, and to evaluate its use as a pharmaceutical excipient. The characterization of the materials was performed by infrared spectroscopy, thermogravimetric analysis and rheological studies of powder. Analysis of the material showed that it has reasonable flow characteristics and compressibility, allowing the use as diluent of tablets. Tablets were produced with a cashew gum isolated and purified by the direct compression method, and it was shown that the tablets produced with the purified cashew gum obtained better mechanical properties (hardness and friability) and less disintegration time than tablets made with gum of cashew isolated, suggesting the use of purified cashew gum as a diluent for this type of pharmaceutical form.


cashew gum, pharmaceutical excipient, direct compression, characterization, tablets


Guazzaroni Jacobs, M., Klug, D. B., Christian Moreton, R., & Silverstein, I. (2009). Qualification of excipients for use in pharmaceuticals. Chimica Oggi , 27(5), 11-13. Retrieved in 2016, May 6, from http://cat.inist.fr/?aModele=afficheN&cpsidt=22065566

Ofori-Kwakye, K., Mfoafo, K. A., Kipo, S. L., Kuntworbe, N., & Boakye-Gyasi, M. E. (2016). Development and evaluation of natural gum-based extended release matrix tablets of two model drugs of different water solubilities by direct compression. Saudi Pharmaceutical Journal, 24(1), 82-91. http://dx.doi.org/10.1016/j.jsps.2015.03.005. PMid:26903772.

Jivraj, M., Martini, L. G., & Thomson, C. M. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharmaceutical Science & Technology Today, 3(2), 58-63. http://dx.doi.org/10.1016/S1461-5347(99)00237-0. PMid:10664574.

De Paula, R., Heatley, F., & Budd, P. M. (1998). Characterization of Anacardiumoccidentale exudate polysaccharide. Polymer International, 45(1), 27-35. http://dx.doi.org/10.1002/(SICI)1097-0126(199801)45:1<27::AID-PI900>3.0.CO;2-9.

Soares, P. A. G., Bourbon, A. I., Vicente, A. A., Andrade, C. A. S., Barros, W. Jr, Correia, M. T. S., Pessoa, A. Jr, & Carneiro-da-Cunha, M. G. (2014). Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Materials Science and Engineering C, 42, 219-226. http://dx.doi.org/10.1016/j.msec.2014.05.009. PMid:25063113.

Gowthamarajan, K., Jawahar, N., Wake, P., Jain, K., & Sood, S. (2012). Development of buccal tablets for curcumin using Anacardium occidentale gum. Carbohydrate Polymers , 88(4), 1177-1183. http://dx.doi.org/10.1016/j.carbpol.2012.01.072.

Cordeiro, M. S. F., Silva, C. M. B., M. Vieira, A. C. Q., Nadvorny, D., de Sá, L. L. F., de Souza, F. R. L., Nunes, L. C. C., da Silva-Filho, E. C., Rolim-Neto, P. J., Veiga, F. B., Ribeiro, A. J., de La Roca Soares, M. F., & Soares-Sobrinho, J. L. (2017). Biopolymers and pilocarpine interaction study for use in drug delivery systems (DDS). Journal of Thermal Analysis and Calorimetry, 127(2), 1777-1785. http://dx.doi.org/10.1007/s10973-016-5796-9.

Dias, S. F. L., Nogueira, S. S., França Dourado, F., Guimarães, M. A., Oliveira Pitombeira, N. A., Gobbo, G. G., Primo, F. L., Paula, R. C., Feitosa, J. P., Tedesco, A. C., Nunes, L. C., Leite, J. R., & Silva, D. A. (2016). Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydrate Polymers , 143, 254-261. http://dx.doi.org/10.1016/j.carbpol.2016.02.004. PMid:27083367.

Ofori-Kwakye, K., Asantewaa, Y., & Kipo, S. L. (2010). Physicochemical and binding properties of cashew tree gum in metronidazole tablet formulations. International Journal of Pharmacy and Pharmaceutical Sciences, 2(4), 105-109. Retrieved in 2016, May 6, from http://www.ijppsjournal.com/Vol2S uppl4/949.pdf

Gowthamarajan, K., Kumar, G. K. P., Gaikwad, N. B., & Suresh, B. (2011). Preliminary study of Anacardium occidentale gum as binder in formulation of paracetamol tablets. Carbohydrate Polymers, 83(2), 506-511. http://dx.doi.org/10.1016/j.carbpol.2010.08.010.

Ofori-Kwakye, K., Amekyeh, H., El-Duah, M., & Kipo, S. L. (2012). Mechanical and tablet coating properties of cashew tree (anacardium occidentale l) gum-based films. Asian Journal of Pharmaceutical and Clinical Research, 5(Suppl. Suppl 4), 62-68. Retrieved in 2016, May 6, from http://hdl.handle.net/123456789/7113

Agência Nacional de Vigilância Sanitária. (2010). Farmacopeia Brasileira. Brasília: Anvisa.

Aulton, M. E. (2007). Pharmaceutics: the design and manufacture of medicines. London: Churchill Livingstone.

British Pharmacopeia (2012). Retrieved in 2016, May 6, from http://bp2012.infostar.com.cn/Bp2012. aspx?a =display&id=854

Costa, S. M. O., Rodrigues, J. F., & Paula, R. C. M. (1996). Monitorização do processo de purificação de gomas naturais: Goma do cajueiro. Polímeros: Ciência e Tecnologia, 2, 49-55. Retrieved in 2016, May 6, from http://revistapolimeros.org.br/files/v6n2/v6n2a04.pdf

Kumar, R., Patil, M. B., Patil, S. R., & Paschapur, M. S. (2009). Evaluation of Anacardium occidentale gum as gelling agent in aceclofenac gel. International Journal of Pharm Tech Research, 1(3), 695-704. Retrieved in 2016, May 6, from http://sphinxsai.com/PTVOL3/PT=48,%20RAVIKUMAR%20(695-704).pdf

Silva, D. A., Maciel, J. S., Feitosa, J. P. A., Paula, H. C. B., & De Paula, R. C. M. (2010). Polysaccharide-based nanoparticles formation by polyeletrolyte complexation of carboxymethylated cashew gum and chitosan. Journal of Materials Science, 45(20), 5605-5610. http://dx.doi.org/10.1007/s10853-010-4625-y.

Mothé, C. G., & Rao, M. A. (2000). Thermal behavior of gum arabic in comparison with cashew gum. Thermochimica Acta, 357, 9-13. http://dx.doi.org/10.1016/S0040-6031(00)00358-0.

Geldart, D., Abdullah, E. C., Hassanpour, A., Nwoke, L. C., & Wouters, I. (2006). Characterization of powder flowability using measurement of angle of repose. China Particuology , 4(3-4), 104-107. http://dx.doi.org/10.1016/S1672-2515(07)60247-4.

Fu, X., Huck, D., Makein, L., Armstrong, B., Willen, U., & Freeman, T. (2012). Effect of particle shape and size on flow properties of lactose powders. Particuology , 10(2), 203-208. http://dx.doi.org/10.1016/j.partic.2011.11.003.

Jallo, L. J., Ghoroi, C., Gurumurthy, L., Patel, U., & Davé, R. N. (2012). Improvement of flow and bulk density of pharmaceutical powders using surface modification. International Journal of Pharmaceutics, 423(2), 213-225. http://dx.doi.org/10.1016/j.ijpharm.2011.12.012. PMid:22197769.

Hausner, H. H. (1967). Friction conditions in a mass of metal powder. International Journal of Powder Metallurgy, 3(4), 7-13. Retrieved in 2016, May 6, from https://www.osti.gov/biblio/4566075

Carr, R. L. (1965). Classifying flow properties of solids. Chemical Engineering (Albany, N.Y.), 72(3), 69-72., Retrieved in 2016, May 6, from http://en.journals.sid.ir/ViewPaper.aspx?ID=232696

Guo, A., Beddow, J. K., & Vetter, A. F. (1985). A simple relationship between particle shape effects and density, flow rate and Hausner ratio. Powder Technology , 43(3), 279-284. http://dx.doi.org/10.1016/0032-5910(85)80009-7.

Morin, G., & Briens, L. (2013). The effect of lubricants on powder flowability for pharmaceutical application. AAPS PharmSciTech, 14(3), 1158-1168. http://dx.doi.org/10.1208/s12249-013-0007-5. PMid:23897035.

Shah, R. B., Tawakkul, M. A., & Khan, M. A. (2008). Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech, 9(1), 250-258. http://dx.doi.org/10.1208/s12249-008-9046-8. PMid:18446489.

5bb66f5d0e8825d16bbd3c07 polimeros Articles
Links & Downloads


Share this page
Page Sections