Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Conference Paper

Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams

Maciej Combrzyński; Leszek Mościcki; Anita Kwaśniewska; Tomasz Oniszczuk; Agnieszka Wójtowicz; Magdalena Kręcisz; Bartosz Sołowiej; Bożena Gładyszewska; Siemowit Muszyński

Downloads: 0
Views: 48


Abstract: The aim of this work was to determine selected physical properties of biodegradable thermoplastic starch (TPS) filling foams manufactured by extrusion-cooking technique from different combinations of potato starch and two additives: poly(vinyl alcohol) PVA and Plastronfoam PDE. Foams were processed with seven starch/additives combinations at two different extruder-cooker’s screw rotational speeds. The densities of starch foams depended significantly on the additive type and content. The linear relationship between the Young modulus and the ultimate compression force and apparent density was found. The foams processed with the addition of PVA had low density, porosity and lower values of the Young modulus than the foams prepared with PDE.


extrusion-cooking, thermoplastic starch foams, protective loose-fill materials, physical properties, functional additives


Altieri, P. A., & Lacourse, N. L. (1990). Starch based protective loose-fill material. In Proceedings of corn utilization conference III. St. Louis: National Corn Growers Association.

Cunningham, R. L., Carr, M. E., & Bagley, E. B. (1991). Polyurethane foams extended with corn flour. Cereal Chemistry, 68(3), 258-261. Retrieved in 2017, March 16, from http://www.aaccnet.org/publications/cc/backissues/1991/Documents/68_258.pdf

Nabar, Y., Draybuck, D., & Narayan, R. (2006). Physicomechanical and hydrophobic properties of starch foams extruded with different biodegradable polymers. Journal of Applied Polymer Science, 102(1), 58-68. http://dx.doi.org/10.1002/app.22127.

Zhou, J., Song, J., & Parker, R. (2006). Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydrate Polymers , 63(4), 466-475. http://dx.doi.org/10.1016/j.carbpol.2005.09.019.

Nabar, Y., & Narayan, R. (2006). Analysis of the dynamic behavior of a starch foam extrusion process. Journal of Applied Polymer Science, 101(6), 3983-3995. http://dx.doi.org/10.1002/app.22942.

Pushpadass, H. A., Babu, G. S., Weber, R. W., & Hanna, M. A. (2008). Extrusion of starch-based loose-fill packaging foams: effects of temperature, moisture and talc on physical properties. Packaging Technology & Science, 21(3), 171-183. http://dx.doi.org/10.1002/pts.809.

Yang, Z., Graiver, D., & Narayan, R. (2013). Extrusion of humidity-resistant starch foam sheets. Polymer Engineering and Science, 53(4), 5935-5947. http://dx.doi.org/10.1002/pen.23326.

Arif, S., Burgess, G., Narayan, R., & Harte, B. (2007). Evaluation of a biodegradable foam for protective packaging applications. Packaging Technology & Science , 20(6), 413-419. http://dx.doi.org/10.1002/pts.770.

Janssen, L. P. B. M., & Mościcki, L. (Eds.). (2009). Thermoplastic starch . Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

Mościcki, L. (Eds.). (2011). Extrusion-cooking techniques . Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.

Combrzyński, M. (2012). Biodegradability of thermoplastic starch. TEKA Commission Motorization and Power Industry in Agriculture, 12(1), 21-25. Retrieved in 2017, March 16, from http://www.pan-ol.lublin.pl/wydawnictwa/TMot12_1/Teka_12_1.pdf

Mitrus, M. (2012). Starch protective loose-fill foams. In: A. El-Sonbati (Ed.), Thermoplastic elastomers (pp. 79-94). Rijeka: InTech.

Tatarka, P. D., & Cunningham, R. L. (1998). Properties of protective loose-fill foams. Journal of Applied Polymer Science, 61(7), 11157-11176.

Willett, J. L., & Shogren, R. L. (2002). Processing and properties of extruded starch/polymer foams. Polymer, 43(22), 5935-5947. http://dx.doi.org/10.1016/S0032-3861(02)00497-4.

Nafchi, A. M., Moradpour, M., Saeidi, M., & Alias, A. K. (2013). Thermoplastic starches: properties, challenges,and prospects. Starch, 65(1-2), 61-72. http://dx.doi.org/10.1002/star.201200201.

Correa, A. C., Carmona, V. B., Simão, J. A., Mattoso, L. H. C., & Marconcini, J. M. (2017). Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(ε-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 167, 177-184. PMid:28433152. http://dx.doi.org/10.1016/j.carbpol.2017.03.051.

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers , 147, 60-68. PMid:27178909. http://dx.doi.org/10.1016/j.carbpol.2016.03.082.

Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Effect of seaweed on mechanical, thermal, and biodegradation properties of thermoplastic sugar palm starch/agar composites. International Journal of Biological Macromolecules, 99, 265-273. PMid:28249765. http://dx.doi.org/10.1016/j.ijbiomac.2017.02.092.

Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2017). Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites. International Journal of Biological Macromolecules , 97, 606-615. PMid:28109810. http://dx.doi.org/10.1016/j.ijbiomac.2017.01.079.

Lopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., & Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products , 66, 194-205. http://dx.doi.org/10.1016/j.indcrop.2014.12.025.

Ostafińska, A., Mikešová, J., Krejčíková, S., Nevoralová, M., Šturcová, A., Zhigunov, A., Michálková, D., & Šlouf, M. (2017). Thermoplastic starch composites with TiO2 particles: Preparation, morphology, rheology and mechanical properties. International Journal of Biological Macromolecules, 101, 273-282. PMid:28336278. http://dx.doi.org/10.1016/j.ijbiomac.2017.03.104.

Wang, W., Flores, R. A., & Huang, C. T. (1995). Physical properties of two biological cushioning materials form wheat and corn starches. Cereal Chemistry, 72(1), 38-41. Retrieved in 2017, March 16, from http://www.aaccnet.org/publications/cc/backissues/1995/Documents/72_38.pdf

Combrzyński, M., Mitrus, M., Mościcki, L., Oniszczuk, T., & Wójtowicz, A. (2012). Selected aspects of thermoplastic starch production. TEKA Commission of Motorization and Power Industry in Agriculture, 12(1), 25-29. Retrieved in 2017, March 16, from http://www.pan-ol.lublin.pl/wydawnictwa/TMot12_1/Teka_12_1.pdf

Oniszczuk, T., Wójtowicz, A., Mitrus, M., Mościcki, L., Combrzyński, M., Rejak, A., & Gładyszewska, B. (2012). Biodegradation of TPS mouldings enriched with natural fillers. TEKA Commission of Motorization and Power Industry in Agriculture , 12(1), 175-180. Retrieved in 2017, March 16, from http://www.pan-ol.lublin.pl/wydawnictwa/TMot12_1/Teka_12_1.pdf

Oniszczuk, T., Muszyński, S., & Kwaśniewska, A. (2015). The evaluation of sorption properties of thermoplastic starch pellets. Przemysl Chemiczny , 94(10), 1752-1756.

Follain, N., Joly, C., Dole, P., Roge, B., & Mathlouthi, M. (2006). Quaternary starch based blends: Influence of a fourth component addition to the starch/water/glycerol system. Carbohydrate Polymers, 63(3), 400-407. http://dx.doi.org/10.1016/j.carbpol.2005.09.008.

Salgado, P. R., Schmidt, V. C., Molina Ortiz, S. E., Mauri, A. N., & Laurindo, J. B. (2008). Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process. Journal of Food Engineering, 85(3), 435-443. http://dx.doi.org/10.1016/j.jfoodeng.2007.08.005.

Toosi, S. F. (2010). Processing and properties of biodegradable polymer blends based on gelatinized potato starch (Doctoral thesis). MacMaster University, Hamilton, Ontario, Canada. Retrieved in 2017, March 16, from https://macsphere.mcmaster.ca/bitstream/11375/9147/1/fulltext.pdf

Akrami, M., Ghasemi, I., Azizi, H., Karrabi, M., & Seyedabadi, M. (2016). A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 144, 254-262. PMid:27083816. http://dx.doi.org/10.1016/j.carbpol.2016.02.035.

Ayana, B., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. PMid:24906776. http://dx.doi.org/10.1016/j.carbpol.2014.04.024.

Bocz, K., Szolnoki, B., Marosi, A., Tábi, T., Wladyka-Przybylak, M., & Marosi, G. (2014). Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polymer Degradation & Stability, 106, 63-73. http://dx.doi.org/10.1016/j.polymdegradstab.2013.10.025.

Ahire, J. J., Robertson, D. D., van Reenen, A. J., & Dicks, L. M. T. (2017). Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Materials Science and Engineering C, 77, 27-33. PMid:28532029. http://dx.doi.org/10.1016/j.msec.2017.03.248.

Hussain, R., Tabassum, S., Gilani, M. A., Ahmed, E., Sharif, A., Manzoor, F., Shah, A. T., Asif, A., Sharif, F., Iqbal, F., & Siddiqi, S. A. (2016). In situ synthesis of mesoporous polyvinyl alcohol/hydroxyapatite composites for better biomedical coating adhesion. Applied Surface Science, 364, 117-123. http://dx.doi.org/10.1016/j.apsusc.2015.12.057.

Yang, W., Owczarek, J. S., Fortunati, E., Kozanecki, M., Mazzaglia, A., Balestra, G. M., Kenny, J. M., Torre, L., & Puglia, D. (2016). Antioxidant and antibacterial lignin nanoparticles in polyvinyl alcohol/chitosan films for active packaging. Industrial Crops and Products, 94, 800-811. http://dx.doi.org/10.1016/j.indcrop.2016.09.061.

Boonchaisuriya, A., & Chungsiriporn, J. (2011). Biodegradable foams based on cassava starch by compression process. In Proceedings of The 5th PSU-UNS International Conference on Engineering and Technology. Songkhla, Tailândia: ICET.

Râpă, M., Grosu, E., Stoica, P., Andreica, M., & Hetvary, M. (2014). Polyvinyl alcohol and starch blends: properties and biodegradation behavior. Journal of Environmental Research and Protection, 11(1), 34-42. Retrieved in 2017, March 16, from http://www.ecoterra-online.ro/files/1402003301.pdf

Kaisangsri, N., Kerdchoechuen, O., Laohakunjit, N., & Matta, F. B. (2014). Cassava Starch-Based Biodegradable Foam Composited with Plant Fibers and Proteins. Journal of Composites and Biodegradable Polymers, 2, 71-79. http://dx.doi.org/10.12974/2311-8717.2014.02.02.3.

Carr, L. G., Parra, D. F., Ponce, P., Lugao, A. B., & Buchler, P. M. (2006). Influence of Fibers on the Mechanical Properties of Cassava Starch Foams. Journal of Polymers and the Environment, 14(2), 179-183. http://dx.doi.org/10.1007/s10924-006-0008-5.

Stevens, E. S., Klamczynski, A., & Glenn, G. M. (2010). Starch-lignin foams. Express Polymer Letters, 4(5), 311-320. http://dx.doi.org/10.3144/expresspolymlett.2010.39.

Nabar, Y., Narayan, R., & Schindler, M. (2006). Twin screw extrusion production and characterization of starch-foam products for use in cushioning and insulation applications. Polymer Engineering and Science, 46(4), 438-451. http://dx.doi.org/10.1002/pen.20292.

Muszyński, S., Świetlicki, M., Oniszczuk, T., Kwaśniewska, A., Świetlicka, I., Arczewska, M., Oniszczuk, A., Bartnik, G., Kornarzyński, K., & Gładyszewska, B. (2016). Effect of the surface structure of thermoplastic starch pellets on the kinetics of water vapor adsorption. Przemysl Chemiczny , 95(4), 865-869.

Debiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2011). Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Archives of Biology and Technology, 54(5), 1043-1052. http://dx.doi.org/10.1590/S1516-89132011000500023.

Filli, K., Sjöqvist, M., Öhgren, C., Stading, M., & Rigdahl, M. (2011). Development and characterization of extruded biodegradable foams based on zein and pearl millet flour. Annual Transactions of the Nordic Rheology Society, 19:139-145. Retrieved in 2017, March 16, from https://nordicrheologysociety.org/Content/Transactions/2011/20.Filli2011.pdf

Mitrus, M., & Mościcki, L. (2014). Extrusion-cooking of starch procetive loose-fill foams. Chemical Engineering Research & Design, 92(4), 778-783. http://dx.doi.org/10.1016/j.cherd.2013.10.027.

Shen, Y., Gu, J., Tan, H., Lv, S., & Zhang, Y. (2016). Preparation and properties of a polyvinyl alcohol toughened urea-formaldehyde foam for thermal insulation applications. Construction & Building Materials, 120, 104-111. http://dx.doi.org/10.1016/j.conbuildmat.2016.05.096.

Wang, X., Chung, Y. S., Lyoo, W. S., & Min, B. G. (2006). Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption. Polymer International, 55(11), 1230-1235. http://dx.doi.org/10.1002/pi.2068.

Hayter, A. L., & Smith, A. C. (1988). The mechanical properties of extruded food foams. Journal of Materials Science, 23(2), 736-743. http://dx.doi.org/10.1007/BF01174714.

Hutchinson, R. J., Siodlak, G. D. E., & Smith, A. C. (1987). Influence of processing variables on the mechanical properties of extruded maize. Journal of Materials Science , 22(11), 3956-3962. http://dx.doi.org/10.1007/BF01133345.

Van Hecke, E., Allaf, K., & Bouvier, J. M. (1995). Texture and structure of crispy-puffed food products I: Mechanical properties in bending. Journal of Texture Studies , 26(1), 11-25. http://dx.doi.org/10.1111/j.1745-4603.1995.tb00781.x.

Ashby, M. F., & Medalist, R. F. M. (1983). The mechanical properties of cellular solids. Metallurgical Transactions. A, Physical Metallurgy and Materials Science , 14(9), 1755-1769. http://dx.doi.org/10.1007/BF02645546.

Smolarz, A., Van Hecke, E., & Bouvier, J. M. (1989). Computerized image analysis and texture of extruded biscuits. Journal of Texture Studies, 20(2), 223-234. http://dx.doi.org/10.1111/j.1745-4603.1989.tb00435.x.

Hayter, A. L., Smith, A. C., & Richmond, P. (1986). The physical properties of extruded food foams. Journal of Materials Science, 21(10), 3729-3736. http://dx.doi.org/10.1007/BF02403029.

5b7c4ce30e8825cc53896e53 polimeros Articles
Links & Downloads


Share this page
Page Sections