Polímeros: Ciência e Tecnologia
Polímeros: Ciência e Tecnologia
Original Article

Water-uptake properties of a fish protein-based superabsorbent hydrogel chemically modified with ethanol

Martins, Vilásia Guimarães; Costa, Jorge Alberto Vieira; Prentice, Carlos

Downloads: 0
Views: 55


Abstract: Hydrophilic polymers can form hydrogels, which are able to absorb and retain as much water as one hundred times their weight. Polymers based on natural products have been drawing attention since they are biocompatible, biodegradable and nontoxic. The aims of this study were to produce and to characterize a biopolymer with superabsorbent properties from fish protein isolates. Hydrogels were produced from protein isolates from Whitemouth croaker processing wastes chemically modified. The extension of change in lysine residues, kinetics in water-uptake capacity, pH effect, ionic strength over the absorption of water by hydrogels and the behavior of the biopolymer when subject to successive hydration and dehydrations were investigated. Results showed that acid modified protein without ethanol treatment reached a maximum absorption of 103.25 gwater/gdry gel, while the same sample modified with ethanol reached 216.05 gwater/gdry gel.


biopolymer, ethanol, fish wastes, protein isolates, superabsorbent


Huang, P.-S., Boyken, S. E., & Baker, D. (2016). The coming of age of de novo protein design. Nature, 537(7620), 320-327. http://dx.doi.org/10.1038/nature19946. PMid:27629638.

Martins, V. G., Palezi, S. C., Costa, J. A. V., & Prentice, C. (2014). Hydrolysis of insoluble fish protein residue from Whitemouth croaker (Micropogonias furnieri ) by fungi. Brazilian Archives of Biology and Technology, 57(1), 96-102. http://dx.doi.org/10.1590/S1516-89132014000100014.

Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition , 40(1), 43-81. http://dx.doi.org/10.1080/10408690091189266. PMid:10674201.

Freitas, I. R., Cortez-Vega, W. R., & Prentice, C. (2015). Recovery of anchovy (Engraulis anchoita) and whitemouth croaker (Micropogonias furnieri) proteins by alkaline solubilisation process. Acta Alimentaria , 44(2), 221-228. http://dx.doi.org/10.1556/AAlim.2014.0005.

Martins, V. G., Costa, J. A. V., Damodaran, S., & Prentice, C. (2011). Chemical modification and structural analysis of protein isolates to produce hydrogel using Whitemouth croaker (Micropogonias furnieri) wastes. Applied Biochemistry and Biotechnology, 165(1), 279-289. http://dx.doi.org/10.1007/s12010-011-9250-y. PMid:21505805.

Halim, N. R. A., Yusof, H. M., & Sarbon, N. M. (2016). Functional and bioactive properties of fish protein hydrolysates and peptides: a comprehensive review. Trends in Food Science & Technology, 51, 24-33. http://dx.doi.org/10.1016/j.tifs.2016.02.007.

Cortez-Vega, W. R., Pizato, S., Souza, J. T. A., & Prentice, C. (2014). Using edible coatings from Whitemouth croaker (Micropogonias furnieri) protein isolate and organo-clay nanocomposite for improve the conservation properties of fresh-cut Formosa papaya. Innovative Food Science & Emerging Technologies, 22, 197-202. http://dx.doi.org/10.1016/j.ifset.2013.12.007.

Guerard, F., Guimas, L., & Binet, A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis. B, Enzymatic, 19-20(2), 489-498. http://dx.doi.org/10.1016/S1381-1177(02)00203-5.

Rathna, G. V. N., & Damodaran, S. (2002). Effect of nonprotein polymers on water-uptake properties of a fish protein-based hydrogel. Journal of Applied Polymer Science , 85(1), 45-51. http://dx.doi.org/10.1002/app.10566.

Matsushima, A., Kodera, Y., Hiroto, M., Nishimura, H., & Inada, Y. (1996). Bioconjugates of proteins and polyethylene glycol: potent tools in biotechnological processes. Journal of Molecular Catalysis. B, Enzymatic, 2(1), 1-17. http://dx.doi.org/10.1016/1381-1177(96)00003-3.

DeSantis, G., & Jones, B. (1999). Chemical modification of enzymes for enhanced functionality. Current Opinion in Biotechnology, 10(4), 324-330. http://dx.doi.org/10.1016/S0958-1669(99)80059-7. PMid:10449313.

Kurniawan, L., Qiao, G. G., & Zhang, X. (2007). Chemical modification of wheat protein-based natural polymers: grafting and cross-linking reactions with poly(ethylene oxide) diglycidyl ether and ethyl diamine. Biomacromolecules, 8(9), 2909-2915. http://dx.doi.org/10.1021/bm0703719. PMid:17663528.

Solanki, K., Shah, S., & Nath Gupta, M. (2008). Chemical modification of alpha-chymotrypsin for obtaining high transesterification activity in low water organic media. Biocatalysis and Biotransformation, 26;(4), 258-265. http://dx.doi.org/10.1080/10242420801897361.

Iannace, S., Nicolais, L., & Huang, S. J. (1997). Water sorption of glycol-modified cross-linked gelatin-based hydrogels. Journal of Materials Science, 32(6), 1405-1408. http://dx.doi.org/10.1023/A:1018533429283.

Kunioka, M., & Choi, H. J. (1998). Hydrolytic degradation and mechanical properties of hydrogels prepared from microbial poly(amino acid)s. Polymer Degradation & Stability, 59(1-3), 33-37. http://dx.doi.org/10.1016/S0141-3910(97)00181-X.

García Sánchez, L. G. J., & Cortés Ortega, J. A. (2014). Síntesis de hidrogeles de acrilamida en soluciones acuosas de etanol. Polímeros: Ciência e Tecnologia, 24(6), 752-756. http://dx.doi.org/10.1590/0104-1428.1663.

Chen, J., Ma, X., Dong, Q., Song, D., Hargrove, D., Vora, S. R., Ma, A. W. K., Lu, X., & Lei, Y. (2016). Self-healing of thermally-induced, biocompatible and biodegradable protein hydrogel. RSC Advances, 6(61), 56183-56192. http://dx.doi.org/10.1039/C6RA11239K.

Park, T. G., & Hoffman, A. S. (1992). Synthesis and characterization of pH-and/or temperature sensitive hydrogels. Journal of Applied Polymer Science, 46(4), 659-671. http://dx.doi.org/10.1002/app.1992.070460413.

Bae, K. H., & Kurisawa, M. (2016). Emerging hydrogel designs for controlled protein delivery. Biomaterials Science, 4(8), 1184-1192. http://dx.doi.org/10.1039/C6BM00330C. PMid:27374633.

Hideki, O. (1992). Handbook of polymer degradation. New York: Marcel Dekker.

Hellriegel, J., Günther, S., Kampen, I., Bolea Albero, A., Kwade, A., Böl, M., & Krull, R. (2014). Biomimetic gellan-based hydrogel as a physicochemical biofilm model. Journal of Biomaterials and Nanobiotechnology, 5(2), 83-97. http://dx.doi.org/10.4236/jbnb.2014.52011.

Rathna, G. V. N., Li, J., & Gunasekaran, S. (2004). Functionally-modified egg white albumen hydrogels. Polymer International, 53(12), 1994-2000. http://dx.doi.org/10.1002/pi.1611.

Martins, V. G., Costa, J. A. V., & Prentice-Hernández, C. (2009). Hidrolisado proteico de pescado obtido por vias química e enzimática a partir de corvina (Micropogonias furnieri). Química Nova , 32(1), 61-66. http://dx.doi.org/10.1590/S0100-40422009000100012.

Hwang, D. C., & Damodaran, S. (1997). Synthesis and properties of fish protein-based hydrogel. Journal of the American Oil Chemists’ Society, 74(9), 1165-1171. http://dx.doi.org/10.1007/s11746-997-0041-0.

Scopes, R. K. (1974). Measurement of protein by spectrophotometry at 205 nm. Analytical Biochemistry, 59(1), 277-282. http://dx.doi.org/10.1016/0003-2697(74)90034-7. PMid:4407487.

Hall, R. J., Trinder, N., & Givens, D. I. (1973). Observations on the use of 2,4,6-trinitrobenzene sulphonic acid for the determination of available lysine in animal protein concentrates. Analyst, 98(1170), 673-686. http://dx.doi.org/10.1039/an9739800673. PMid:4753164.

Hwang, D. C., & Damodaran, S. (1996). Chemical modification strategies for synthesis of protein-based hydrogel. Journal of Agricultural and Food Chemistry , 44(3), 751-758. http://dx.doi.org/10.1021/jf9503826.

Thiansilakul, Y., Benjakul, S., & Shahidi, F. (2007). Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chemistry, 103(4), 1385-1394. http://dx.doi.org/10.1016/j.foodchem.2006.10.055.

Hwang, D., & Damodaran, S. (1998). Carboxyl modified superabsorbent protein hydrogel. US Patent No 5,847,089. Alexandria.

Buchholz, F. L. (1994). Preparation methods of superabsorbent polyacrylates. In American Chemical Society. Superabsorbent polymers: science and technology (ACS Symposium Series, Vol. 573). Washington: ACS.

George, M., & Abraham, T. E. (2007). pH sensitive alginate-guar gum hydrogel for the controlled delivery of protein drugs. International Journal of Pharmaceutics, 335(1-2), 123-129. http://dx.doi.org/10.1016/j.ijpharm.2006.11.009. PMid:17147980.

Tsai, H.-S., & Wang, Y.-Z. (2008). Properties of hydrophilic chitosan network membranes by introducing binary crosslink agents. Polymer Bulletin, 60(1), 103-113. http://dx.doi.org/10.1007/s00289-007-0846-x.

Pourjavadi, A., Amini-Fazl, M. S., & Hosseinzadeh, H. (2005). Partially hydrolyzed crosslinked alginate-graft-polymethacrylamide as a novel biopolymer-based superabsorbent hydrogel having pH-responsive properties. Macromolecular Research , 13(1), 45-53. http://dx.doi.org/10.1007/BF03219014.

Peppas, N. A., & Mikes, A. G. (1986). Hydrogels in Medicine and Pharmacy. Vol.1, CRC Press: Boca Raton, FL.

Sadeghi, M., & Hosseinzadeh, H. (2008). Synthesis of starch–poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel with salt and pH-responsiveness properties as a drug delivery system. Journal of Bioactive and Compatible Polymers, 23(4), 381-404. http://dx.doi.org/10.1177/0883911508093504.

Pourjavadi, A., Kurdtabar, M., Mahdavinia, G. R., & Hosseinzadeh, H. (2006). Synthesis and super-swelling behavior of a novel protein-based superabsorbent hydrogel. Polymer Bulletin, 57(6), 813-824. http://dx.doi.org/10.1007/s00289-006-0649-5.

Mahdavinia, G. R., Rahmani, Z., Karami, S., & Pourjavadi, A. (2014). Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. Journal of Biomaterials Science, 25(17), 1891-1906. http://dx.doi.org/10.1080/09205063.2014.956166. PMid:25197770.

Mahdavinia, G. R., Pourjavadi, A., Hosseinzadeh, H., & Zohuriaan, M. J. (2004). Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt and pH-responsiveness properties. European Polymer Journal , 40(7), 1399-1407. http://dx.doi.org/10.1016/j.eurpolymj.2004.01.039.

Reis, A. V., Guilherme, M. R., Cavalcanti, O. A., Rubira, A. F., & Muniz, E. C. (2006). Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymers, 47(6), 2023-2029. http://dx.doi.org/10.1016/j.polymer.2006.01.058.

Toit, L. C. D., Pillay, V., & Danckwerts, M. P. (2006). Application of synergism and variation in ionic compatibilities within a hydrophilic polymeric sodium starch glycolate-kappa-carrageenan combination: textural profiling of the suspension behavior. Journal of Bioactive and Compatible Polymers, 21(2), 107-122. http://dx.doi.org/10.1177/0883911506062975.

Zhang, J., Yuan, K., Wang, Y. P., Zhang, S. T., & Zhang, J. (2007). Preparation and pH responsive behavior of poly(vinyl alcohol) - chitosan- poly(acrylic acid) full-IPN hydrogels. Journal of Bioactive and Compatible Polymers, 22(2), 207-218. http://dx.doi.org/10.1177/0883911506076046.

Kong, N., & Li, H. (2015). Protein fragment reconstitution as a driving force for self-assembling reversible protein hydrogels. Advanced Functional Materials, 25(35), 5593-5601. http://dx.doi.org/10.1002/adfm.201502277.

5b7c683f0e8825a23a896e51 polimeros Articles
Links & Downloads


Share this page
Page Sections